Dual-Channel Digital Isolators, 5 kV

Data Sheet

FEATURES

High isolation voltage: $\mathbf{5 0 0 0}$ V rms
Enhanced system-level ESD performance per IEC 61000-4-x
Low power operation
5 V operation
1.6 mA per channel maximum at $\mathbf{0} \mathbf{~ M b p s}$ to $\mathbf{2} \mathbf{~ M b p s}$
3.7 mA per channel maximum at 10 Mbps

3 V operation
1.4 mA per channel maximum at $\mathbf{0}$ Mbps to $\mathbf{2} \mathbf{~ M b p s}$
2.4 mA per channel maximum at $\mathbf{1 0} \mathbf{~ M b p s}$

Bidirectional communication
3 V/5 V level translation
High temperature operation: $125^{\circ} \mathrm{C}$
Default low output
High data rate: dc to 10 Mbps (NRZ)
Precise timing characteristics
3 ns maximum pulse width distortion
3 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
16-lead SOIC wide body package version (RW-16)
16-lead SOIC wide body enhanced creepage version (RI-16)
Safety and regulatory approvals (RI-16 package)
UL recognition: $\mathbf{5 0 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
IEC 60601-1: 250 V rms (reinforced)
IEC 60950-1: 400 V rms (reinforced)
VDE Certificate of Conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
$V_{\text {Iorm }}=846$ V peak

APPLICATIONS

General-purpose, high voltage, multichannel isolation
Medical equipment
Power supplies
RS-232/RS-422/RS-485 transceiver isolation

GENERAL DESCRIPTION

The ADuM221x ${ }^{1}$ are 2-channel digital isolators based on Analog Devices, Inc., iCoupler technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics that are superior to alternatives such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, iCoupler devices remove the design difficulties commonly associated with optocouplers. Typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADuM2210

Figure 2. ADuM2211
temperature and lifetime effects are eliminated with the simple iCoupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these iCoupler products. Furthermore, iCoupler devices run at one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM221x isolators provide two independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). The ADuM221x models operate with the supply voltage of either side ranging from 3.0 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The ADuM221x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

Similar to the ADuM320x isolators, the ADuM221x isolators contain various circuit and layout enhancements to provide increased capability relative to system-level IEC 61000-4-x testing (ESD, burst, and surge). The precise capability in these tests for either the ADuM320x or ADuM221x products is strongly determined by the design and layout of the user's board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

[^0]
Rev. A

[^1]
TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation 3
Electrical Characteristics-3 V Operation. 5
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or $3 \mathrm{~V} / 5 \mathrm{~V}$Operation7
Package Characteristics 10
Regulatory Information 10
Insulation and Safety-Related Specifications 10
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 11
Recommended Operating Conditions 11
REVISION HISTORY
8/11-Rev. 0 to Rev. A
Added 16-Lead SOIC_IC Package Universal
Changes to Features Section 1
Changes to Table 5 and Table 6 10
Changes to Endnote 1, Table 8 11
Updated Outline Dimensions 19
Changes to Ordering Guide 20
Absolute Maximum Ratings 12
ESD Caution. 12
Pin Configurations and Function Descriptions 13
Typical Performance Characteristics 15
Applications Information 16
PCB Layout 16
Propagation Delay-Related Parameters 16
DC Correctness and Magnetic Field Immunity 16
Power Consumption 17
Insulation Lifetime. 18
Outline Dimensions 19
Ordering Guide 20

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, per Channel, Quiescent	IDDI(0)		0.4	0.8	mA	
Output Supply Current, per Channel, Quiescent	IDDo (0)		0.5	0.6	mA	
	ADuM2210, Total Supply Current, Two Channels ${ }^{1}$	DC to 2 Mbps				
$V_{\text {DD } 1}$ Supply Current	$\mathrm{IDD1}$ (Q)		1.3	1.7	mA	DC to 1 MHz logic signal frequency
VDD2 Supply Current	IDD2 (0)		1.0	1.6	mA	DC to 1 MHz logic signal frequency
10 Mbps (TR Grade Only)						
$V_{\text {DD } 1}$ Supply Current	$\operatorname{loD1}(10)$		3.5	4.6	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2}$ (10)		1.7	2.8	mA	5 MHz logic signal frequency
ADuM2211, Total Supply Current, Two Channels ${ }^{1}$ DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	$\operatorname{ldD1~(Q)~}$		1.1	1.5	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{IDD2}$ (Q)		1.3	1.8	mA	DC to 1 MHz logic signal frequency
10 Mbps (TR Grade Only)						
$V_{\text {DD } 1}$ Supply Current	$\mathrm{IDD1}_{(10)}$		2.6	3.4	mA	5 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\operatorname{ldD2}$ (10)		3.1	4.0	mA	5 MHz logic signal frequency
For All Models						
Input Currents	$l_{\text {A }}, l_{\text {lib }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}} \leq \mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	0.7 (VDD1 or $V_{D D 2}$)			V	
Logic Low Input Threshold	VIL			0.3 (VD1 or $V_{D D 2}$)	V	
Logic High Output Voltages	Voat	($\mathrm{V}_{\mathrm{DD} 1}$ or $V_{D D 2}$ 0.1	5.0		V	$\mathrm{I}_{\text {ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{lH}}$
	Vobh	($\mathrm{V}_{\mathrm{DD} 1}$ or $V_{D D 2}$ 0.5	4.8		V	$\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	Voal		0.0	0.1	V	$\mathrm{l}_{\text {lox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {l }}=\mathrm{V}_{\text {lxL }}$
	$V_{\text {овL }}$		0.04	0.1	V	$\mathrm{l}_{\text {lx }}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {Ix }}$
SWITCHING SPECIFICATIONS						
ADuM221xSR						
Minimum Pulse Width ${ }^{2}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		150	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, \|tpLH - tphl ${ }^{4}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{5}$	$t_{\text {PSK }}$			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PKKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		10		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM2210/ADuM2211

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
ADuM221xTR							
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, \|tpLH - tpHL ${ }^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$t_{\text {PSKCD }}$			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing Directional Channels ${ }^{6}$	teskod			17	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Vx}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	$\left\|C M_{L}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{x}}=0 \mathrm{~V}, \mathrm{VCM}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.2		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	$\mathrm{ldDI}(\mathrm{D})$		0.19		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	IdDo (D)		0.05		mA/Mbps		

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11 for total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply currents as a function of data rate for ADuM2210 and ADuM2211 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—3 V OPERATION

All voltages are relative to their respective ground. $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, per Channel, Quiescent	IDDI (0)		0.3	0.5	mA	
Output Supply Current, per Channel, Quiescent	IDDo (0)		0.3	0.5	mA	
ADuM2210, Total Supply Current, Two Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{IDD1}$ (0)		0.8	1.3	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	IDD2 (0)		0.7	1.0	mA	DC to 1 MHz logic signal frequency
10 Mbps (TR Grade Only)						
$V_{\text {DD } 1}$ Supply Current	lodi (10)		2.0	3.2	mA	5 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}$ (10)		1.1	1.7	mA	5 MHz logic signal frequency
ADuM2211,Total Supply Current, Two Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{IDD1}$ (0)		0.7	1.3	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{l}_{\text {DD2 (0) }}$		0.8	1.6	mA	DC to 1 MHz logic signal frequency
10 Mbps (TR Grade Only)						
$V_{\text {DD } 1}$ Supply Current	$\mathrm{ILD1}_{\text {(10) }}$		1.5	2.1	mA	5 MHz logic signal frequency
VDD2 Supply Current	$\operatorname{ldD2}$ (10)		1.9	2.4	mA	5 MHz logic signal frequency
For All Models						
Input Currents	$I_{\text {A }}, l_{\text {IB }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}} \leq \mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$
Logic High Input Threshold	V_{IH}	0.7 (VD1 or $V_{D D 2}$)			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.3 (VDD1 or $V_{D D 2}$)	V	
Logic High Output Voltages	Voat	($\mathrm{V}_{\mathrm{DD} 1}$ or $V_{D D 2}$ 0.1	3.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$
	$\mathrm{V}_{\text {ObH }}$	($\mathrm{V}_{\mathrm{DD} 1}$ or $V_{D D 2}$) 0.5	2.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$
Logic Low Output Voltages	$\mathrm{V}_{\text {oal }}$		0.0	0.1	V	$\mathrm{l}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxL }}$
	Vobl		0.04	0.1	V	$\mathrm{l}_{\text {lox }}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$
			0.2	0.42	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{lxL}}$
SWITCHING SPECIFICATIONS						
ADuM221xSR						
Minimum Pulse Width ${ }^{2}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	tPHL, tPLH	20		150	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHLL }}\right\|^{4}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	tpsk			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PSKCo }} / \mathrm{t}_{\text {PSKod }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		10		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM2210/ADuM2211

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
ADuM221xTR							
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tpskco			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & V_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }_{\text {L }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.1		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	$\mathrm{ldDI}(\mathrm{D})$		0.10		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	IDDO (D)		0.03		mA/Mbps		

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11 for total $\mathrm{l}_{\mathrm{DD} 1}$ and $\mathrm{l}_{\mathrm{DD} 2}$ supply currents as a function of data rate for ADuM2210 and ADuM2211 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{I x}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \mathrm{x}}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \mathrm{x}}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION

All voltages are relative to their respective ground. $5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} .3 \mathrm{~V} / 5 \mathrm{~V}$ operation: 3.0 V $\leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$; or $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, per Channel, Quiescent	IDDI(0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.4	0.8	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.3	0.5	mA	
Output Supply Current, per Channel, Quiescent	IDDo (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.3	0.5	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.5	0.6	mA	
ADuM2210, Total Supply Current, Two Channels ${ }^{1}$						
DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{IDD1}$ (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.3	1.7	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.8	1.3	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD2}$ (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.7	1.0	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.0	1.6	mA	DC to 1 MHz logic signal frequency
10 Mbps (TR Grade Only)						
$V_{\text {DD1 }}$ Supply Current	$\mathrm{IDD1}_{(10)}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			3.5	4.6	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.0	3.2	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	IDD2 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.1	1.7	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.7	2.8	mA	5 MHz logic signal frequency
ADuM2211,Total Supply Current, Two Channels ${ }^{1}$ DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	$\mathrm{ldD1}$ (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.1	1.5	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.7	1.3	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	ldD2 (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.8	1.6	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.3	1.8	mA	DC to 1 MHz logic signal frequency
10 Mbps (TR Grade Only)						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{IDD1}^{(10)}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.6	3.4	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.5	2.1	mA	5 MHz logic signal frequency
$\mathrm{V}_{\text {DD } 2}$ Supply Current	$\mathrm{ldD2}$ (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.9	2.4	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.1	4.0	mA	5 MHz logic signal frequency

Parameter	Symbol	Min	Typ \quad Max	Unit	Test Conditions
Output Dynamic Supply Current,	IDDo (D)				
per Channe l^{8}					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		$\mathrm{~mA} / \mathrm{Mbps}$
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation		0.05			

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11 for total lod and loD2 supply currents as a function of data rate for ADuM2210 and ADuM2211 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\text {Ix }}$ signal to the 50% level of the falling edge of the $V_{0 \times}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 \times}$ signal to the 50% level of the rising edge of the $V_{0 \times}$ signal.
${ }^{5} \mathrm{t}_{\text {psk }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ and/or tpLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ADuM2210/ADuM2211

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JcI}		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {Jсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	center of package underside

1 Device considered a 2-terminal device: Pin 1 through Pin 8 are shorted together and Pin 9 through Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM221x are approved by the organizations listed in Table 5. Refer to Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 5.

UL	CSA	VDE
Recognized under 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice \#5A	Certified according to DIN V VDE V 0884-10 (VDE V $0884-10): ~ 2006-12^{2}$
Single Protection		
5000 V rms Isolation Voltage	Basic insulation per CSA 60950-1-07 and IEC $60950-1,600 \mathrm{~V} \mathrm{rms} \mathrm{(848} \mathrm{~V} \mathrm{peak)} \mathrm{maximum}$ working voltage	Reinforced insulation, 846 V peak
	RW-16 package: Reinforced insulation per CSA 60950-1-07 and IEC 60950-1, 380 V rms (537 V peak) maximum working voltage; reinforced insulation per IEC 60601-1 125 V rms (176 V peak) maximum working voltage	
	RI-16 package: Reinforced insulation per CSA 60950-1-07 and IEC 60950-1, 400 V rms (565 V peak)	
	maximum working voltage; reinforced	
insulation per IEC 60601-1 250 V rms		
(353 V peak) maximum working voltage		
	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL1577, each ADuM221x is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 second (current leakage detection limit $=10 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM221x is proof tested by applying an insulation test voltage $\geq 1590 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage Minimum External Air Gap	L(I01)	5000 8.0 min	V rms mm	1-minute duration Distance measured from input terminals to output terminals, shortest distance through air along the PCB mounting plane, as an aid to PC board layout
Minimum External Tracking (Creepage) RW-16 Package	L(IO2)	7.7 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage) RI-16 Package	L(I02)	8.3 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)	CTI	Insulation distance through insulation >175	mm	DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1)
Tracking Resistance (Comparative Tracking Index) Isolation Group				

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means of protective circuits. Note that the asterisk $\left(^{*}\right)$ branded on packages denotes DIN V VDE V 0884-10 approval for 846 V peak working voltage.

Table 7.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 300 \mathrm{~V} \mathrm{rms}$			I to IV	
For Rated Mains Voltage $\leq 450 \mathrm{~V}$ rms			I to II	
For Rated Mains Voltage $\leq 600 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/125/21	
Pollution Degree (DIN VDE 0110, Table 1)			2	
Maximum Working Insulation Voltage		Viorm	846	\checkmark peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }} 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1590	\checkmark peak
Input-to-Output Test Voltage, Method A		$V_{\text {PR }}$		
After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		1375	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		1018	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10$ seconds	$V_{\text {TR }}$	6000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure; see Figure 3			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{51}	265	mA
Side 2 Current		I_{5}	335	mA
Insulation Resistance at T_{s}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+125	${ }^{\circ} \mathrm{C}$
Supply Voltages 1	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	3.0	5.5	V
Input Signal Rise and Fall Times			1.0	ms

${ }^{1}$ All voltages are relative to their respective ground.

ADuM2210/ADuM2211

ABSOLUTE MAXIMUM RATINGS

Table 9.

Parameter	Rating
Storage Temperature (T_{st})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
Input Voltage ($\left.\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
Output Voltage ($\mathrm{Voa}_{\text {or }}$, $\mathrm{Vob}^{10}{ }^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Average Output Current per Pin ${ }^{3}$	
Side 1 (lor_{1})	-18 mA to +18 mA
Side 2 (loz)	-22 mA to +22 mA
Common-Mode Transients ${ }^{4}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mathrm{\mu s}$
${ }^{1}$ All voltages are relative to their respective ground.	
${ }^{2} V_{D O I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the PCB Layout section.	
${ }^{3}$ See Figure 3 for maximum rated current val ${ }^{4}$ Refers to common-mode transients across th mode transients exceeding the Absolute M up or permanent damage.	s for various temperatures. insulation barrier. Commonimum Rating can cause latch-

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 10. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC VoItage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
\quad Reinforced Insulation	846	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
\quad Reinforced Insulation	846	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

Table 11. ADuM2210 Truth Table (Positive Logic)

V_{IA} Input	VIB Input	$\mathrm{V}_{\text {DD } 1}$ State	$\mathrm{V}_{\text {DD } 2}$ State	VoA Output	Vob Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	L	L	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDI }}$ power restoration.
X	X	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDo }}$ power restoration.

Table 12. ADuM2211 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$\mathrm{V}_{\text {IB }}$ Input	$\mathrm{V}_{\mathrm{DD} 1}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	$\mathrm{V}_{\text {OA }}$ Output	$\mathrm{V}_{\text {OB }}$ Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	Indeterminate	L	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DII }}$ power restoration.
X	X	Powered	Unpowered	L	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDo }}$ power restoration.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES:

1. PIN 1 AND PIN 7 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 1 IS RECOMMENDED.
2. PIN 9 AND PIN 16 ARE INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND $_{2}$ IS RECOMMENDED.

Figure 4. ADuM2210 Pin Configuration

Table 13. ADuM2210 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
2	NC	No internal connection.
3	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.
4	$\mathrm{~V}_{\mathrm{IA}}$	Logic Input A.
5	$\mathrm{VIB}_{\mathrm{IB}}$	Logic Input B.
6	NC	No internal connection.
7	GND 1	Ground 1. Ground reference for Isolator Side 1.
8	NC	No internal connection.
9	GND	
10	NC	Ground 2. Ground reference for Isolator Side 2.
11	NC	No internal connection.
12	$\mathrm{~V}_{\mathrm{OB}}$	No internal connection.
13	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output B.
14	$\mathrm{~V}_{\mathrm{DD} 2}$	Logic Output A.
15	NC	Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.
16	GND	No internal connection.

NOTES:

1. PIN 1 AND PIN 7 ARE INTERNALLY CONNECTED, AND

CONNECTING BOTH TO GND 1 IS RECOMMENDED.
2. PIN 9 AND PIN 16 ARE INTERNALLY CONNECTED, AND

CONNECTING BOTH TO GND 2 IS RECOMMENDED.
Figure 5. ADuM2211 Pin Configuration

Table 14. ADuM2211 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	GND ${ }_{1}$	Ground 1. Ground reference for Isolator Side 1.
2	NC	No internal connection.
3	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.
4	V ${ }_{\text {OA }}$	Logic Output A.
5	$\mathrm{V}_{\text {IB }}$	Logic Input B.
6	NC	No internal connection.
7	GND ${ }_{1}$	Ground 1. Ground reference for Isolator Side 1.
8	NC	No internal connection.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	NC	No internal connection.
11	NC	No internal connection.
12	$\mathrm{V}_{\text {ов }}$	Logic Output B.
13	$V_{\text {IA }}$	Logic Input A.
14	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.
15	NC	No internal connection.
16	GND_{2}	Ground 2. Ground reference for Isolator Side 2.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 7. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 8. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 9. Typical ADuM2210 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 10. Typical ADuM2210 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 11. Typical ADuM2211 VDD1 or $V_{D D 2}$ Supply Current vs. Data Rate for 5 V and 3 V Operation

APPLICATIONS INFORMATION

PCB LAYOUT

The ADuM221x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 12). Bypass capacitors are most conveniently connected between Pin 1 and Pin 3 for $V_{D D 1}$ and between Pin 14 and Pin 16 for $V_{\text {DD2 }}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm . Bypassing between Pin 3 and Pin 7 and between Pin 9 and Pin 14 should be considered unless the ground pair on each package side is connected close to the package.

Figure 12. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the device's Absolute Maximum Ratings, thereby leading to latch-up or permanent damage.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the length of time it takes for a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to logic high.

Figure 13. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs among channels within a single ADuM221x component.
Propagation delay skew refers to the maximum amount the propagation delay differs among multiple ADuM221x components operated under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent via the transformer to the decoder. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $\sim 1 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state is sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than approximately $5 \mu \mathrm{~s}$, the input side is assumed to be without power or nonfunctional; in which case, the isolator output is forced to a default state (see Table 11 and Table 12) by the watchdog timer circuit.

The limitation on the ADuM221x magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is large enough to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM221x is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \Sigma \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is the magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM221x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 14.

Figure 14. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V -still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM221x transformers. Figure 15 expresses these allowable current magnitudes as a function of frequency for selected distances. As can be seen, the ADuM221x is immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example noted previously, one would have to place a 0.5 kA current 5 mm away from the ADuM221x to affect operation of the component.

Figure 15. Maximum Allowable Current for Various Current-to-ADuM221x Spacings
Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces can induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM221x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{r}
I_{D D O}=I_{D D O(Q)} \quad f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} \times V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
f>0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz , half of the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q)}, I_{D D O}(Q)$ are the specified input and output quiescent supply currents (mA).

To calculate the total $I_{D D 1}$ and $I_{D D 2}$, the supply currents for each input and output channel corresponding to IDD1 and IDD2 are calculated and totaled. Figure 6 and Figure 7 provide perchannel supply currents as a function of data rate for an unloaded output condition. Figure 8 provides per-channel supply current as a function of data rate for a 15 pF output condition. Figure 9 through Figure 11 provide total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ as a function of data rate for ADuM2210/ADuM2211 channel configurations.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM221x.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 10 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than a 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.

The insulation lifetime of the ADuM221x depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates, depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 16, Figure 17, and Figure 18 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 10 can be applied while maintaining the 50 -year minimum lifetime, provided the voltage conforms to either the unipolar ac or dc voltage cases. Any cross-insulation voltage waveform that does not conform to Figure 17 or Figure 18 should be treated as a bipolar ac waveform and its peak voltage should be limited to the 50-year lifetime voltage value listed in Table 10.

Note that the voltage presented in Figure 17 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

Figure 16. Bipolar AC Waveform

Figure 17. Unipolar AC Waveform

Figure 18. DC Waveform

OUTLINE DIMENSIONS

Figure 20. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC] Wide Body (RI-16-1)
Dimension shown in millimeters and (inches)

ORDERING GUIDE

Model ${ }^{1,2}$	Number of Inputs, $V_{\text {DD } 1}$ Side	Number of Inputs, $V_{\text {DD } 2}$ Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Description	Package Option
ADuM2210SRWZ	2	0	1	150	40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM2210TRWZ	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM2210SRIZ	2	0	1	150	40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_IC	RI-16-1
ADuM2210TRIZ	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_IC	RI-16-1
ADuM2211SRWZ	1	1	1	150	40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM2211TRWZ	1	1	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM2211SRIZ	1	1	1	150	40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_IC	RI-16-1
ADuM2211TRIZ	1	1	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead SOIC_IC	RI-16-1

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ Tape and reel is available. The addition of an -RL suffix designates a $13^{\prime \prime}$ (1,000 units) tape and reel option.

[^0]: ${ }^{1}$ Protected by U.S. Patents $5,952,849 ; 6,873,065 ; 6,903,578$; and $7,075,329$. Other patents pending.

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010-2011 Analog Devices, Inc. All rights reserved.

