

Features

- 256K, 512K, and 1MB secondary cache module family using Synchronous and Asynchronous SRAMs.
- Organized as a 32K, 64K, or 128K x 72 package on a 4.3" x 1.1", 160-lead, Dual Read-out DIMM for SSRAM and 64K x 72 package for ASRAM
- Available in both interleaved (i486/PentiumTM) and linear (PowerPCTM) burst modes
- Operation for 50MHz to 66MHz supported

- Fast access times: 9 and 11ns using SSRAM; 12ns using ASRAM
- Byte Parity
- Individual Byte Write control
- Low capacitive address, control, clock, and data bus loading
- Single +3.3V or 5V, +/- 5% power supply
- 5V-tolerant common data I/O

Description

The IBM family of 256KB, 512KB, and 1MB synchronous SRAM modules uses IBM's burstable, highperformance 0.5-micron CMOS Static RAMs that are versatile and can achieve up to 9ns access. The 512KB modules integrate four 64K x 18 burst SRAMs. The burst-mode operation of these modules supports PowerPC-based systems and is available for either +3.3V or +5V applications. The 512KB ASRAM module offers a cost/performance optimization for +5V applications.

This IBM family of Cache modules supports operation up to 66MHZ. Outputs are 5V tolerant and LVTTL compatible. The Cache family is presently designed to support either Pentium or PowerPCbased controllers.

Connector Pin Assignment

mont			
GND D63C5 D61C5 D597 D531D D51D D531D D475 D50D D475 D50D D50D D50D D50D5 D50D5 D50D5 D50D5 D500D5 D50D5 D50D5 D500D500	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 101 102 103 104 105 106 107 108 100 110 111 112 113 114 115 116 117 118 1120 121 122	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 15 6 17 8 9 21 22 3 24 25 22 7 8 9 30 31 23 34 5 6 7 8 9 10 11 12 3 34 5 6 7 8 9 10 11 12 3 14 15 6 7 8 9 10 11 12 3 14 15 6 7 8 9 10 11 12 3 14 15 6 17 7 8 9 20 12 21 22 3 24 25 26 27 28 9 30 31 22 3 34 33 34 5 6 6 7 8 9 10 11 12 13 14 15 6 17 7 8 9 20 12 22 24 25 26 27 28 9 30 31 22 33 34 5 5 6 37 8 9 30 31 22 33 34 5 5 6 37 8 9 30 31 22 22 24 25 26 7 7 8 9 30 31 22 22 24 25 26 7 7 8 9 30 31 22 33 34 5 5 6 37 8 33 34 5 5 6 7 7 8 9 20 21 22 24 25 27 28 9 30 31 2 33 34 5 5 6 6 7 7 8 9 30 31 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	GND D62 VCC3.3 D60 VCC3.3 D58 D56 GND D76 D54 D52 D50 GND D48 D46 D44 D42 GND D44 D42 GND D40 D74 D38 D36 D34 GND D32 D30 D28 D28 D26 D24 GND D28 D28 D26 D24 GND D22 D20 VCC3.3 D18 GND D72 D20 VCC3.3 D18 GND D72 D20 D24 GND D72 D20 D24 GND D72 D20 D24 GND D72 D20 D24 GND D72 D20 D24 GND D72 D20 D24 GND D72 D20 D24 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D30 D28 D26 D30 D28 D30 D28 D30 D28 D30 D28 D26 D30 D28 D26 D29 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D28 D20 D29 D20 D20 D20 D20 D20 D20 D20 D20 D20 D20
VCC5 D91 VCC5 D5 D3 DGND A0B A3B A3B A3B A3B A3B A3B A3B A3B A3B A3	$\begin{array}{c} 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 139\\ 131\\ 135\\ 136\\ 137\\ 138\\ 139\\ 141\\ 142\\ 143\\ 145\\ 146\\ 147\\ 148\\ 151\\ 152\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ \end{array}$	$\begin{array}{c} 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 62\\ 63\\ 66\\ 66\\ 66\\ 66\\ 66\\ 67\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ \end{array}$	VCC3.3 D8 DP0 VCC3.3 D6 D4 D2 D0 GND A0A A1A A2A A3A A5 GND A7 A9 A11 A13 A15 GND PD2 CLK1 CLK3 GND PD2 CLK1 CLK3 GND WE6 WE4 WE2 WE0 GND ADV0 OE0 VCC3.3 ADSP0 GND

Pins 146, 147, 154, 156, 159, 66, 67, 74, 76, 79 are no connect for the asynchronous module version.

IBM Corporation. All rights reserved.
Use is further subject to the provisions at the end of this document.

Pin Definition

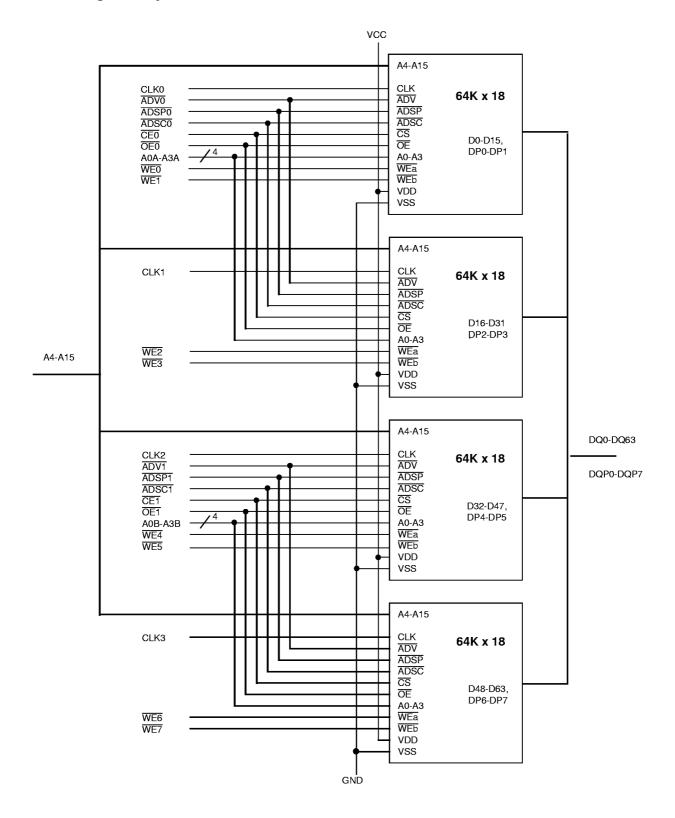
Address
Data I/O
Parity I/O
Chip Enable
Byte Write Enable
Output Enable
Address Status Processor
Address Status Controller
Address Advance
Clock
Presence Detect
Ground
Power Supply

Pin Description

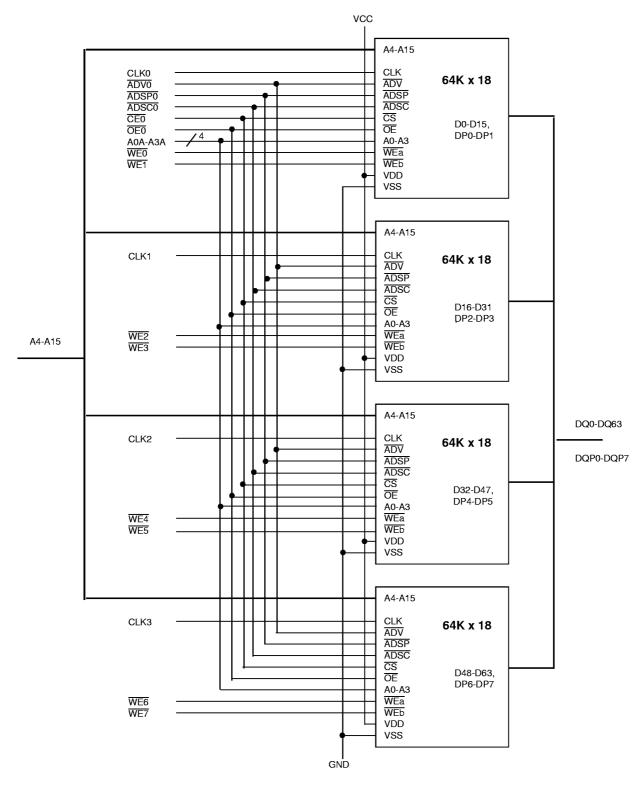
Signal	I/O	Level	Description
A0-A15	I	N/A	Address inputs. These inputs are registered at the rising edge of CLK if $\overline{\text{ADSP}}$ or $\overline{\text{ADSC}}$ is LOW.
D0-D15	I/O	N/A	Data I/O. The 64 bit data bus is divided into 8 bytes: D(0:7), D(8:15), D(16:23), D(24:31), D(32:39), D(40:47), D(48:55), D(56:63). D(0:7) is the least significant byte and D(56:63) is the most significant byte. The direction of the data pins is controlled by OE.
DP0-DP7	I/O	N/A	Data Parity I/O. These are the data parity bits for the data bus. DQP0 applies to D(0:7) and DQP7 applies to D(56:63).
CE0-CE1	1	LOW	Chip enable. These lines are used to enable or disable the module. They can also be used to block ADSP.
WEO-WE7	I	LOW	Byte write enables. These lines allow individual bytes to be written to the module. WE0 controls DQ0-DQ7 and DQP0, WE1 controls DQ8-DQ15 and DQP1, etc.
OE0-OE1	I	LOW	Output enable. These are asynchronous inputs which enable the data I/O drivers when active.
ADSP0-ADSP1	I	LOW	Address Status Processor. When this input and/or ADSC is active, <u>a new external</u> address will be latched thus interrupting any ongoing bur <u>st. If both ADSP and ADSC are</u> active at the same time (at the rising edge of CLK), only ADSP will be recognized. ADSP is ignored when CE is HIGH.
ADSC0-ADSC1	I	LOW	Address Status Controller. When this input and/or ADSP is active, a new external address will be latched thus interrupting any ongoing burst. A read or write is performed using the new address if all chip enables are active.
ADV0-ADV1	I	LOW	Address Advance. The input is used to automatically increment the internal burst address counter. Depending on the module type, the burst sequence can be either linear (Power-PC based) or interleaved (Pentium/486) based.
CLK(0:3)	I	N/A	Clock. This signal is used to latch the address, data (store), ADSP, ADSC, CE, WE, and ADV. All synchronous inputs must meet setup and hold times around the clock's rising edge.
GND	Ι	N/A	Ground.
VCC3.3 or VCC5	I	N/A	Power Supply: +3.3V (Synchronous modules) or +5.0V (Asynchronous module)

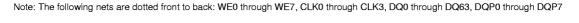
Ordering Information

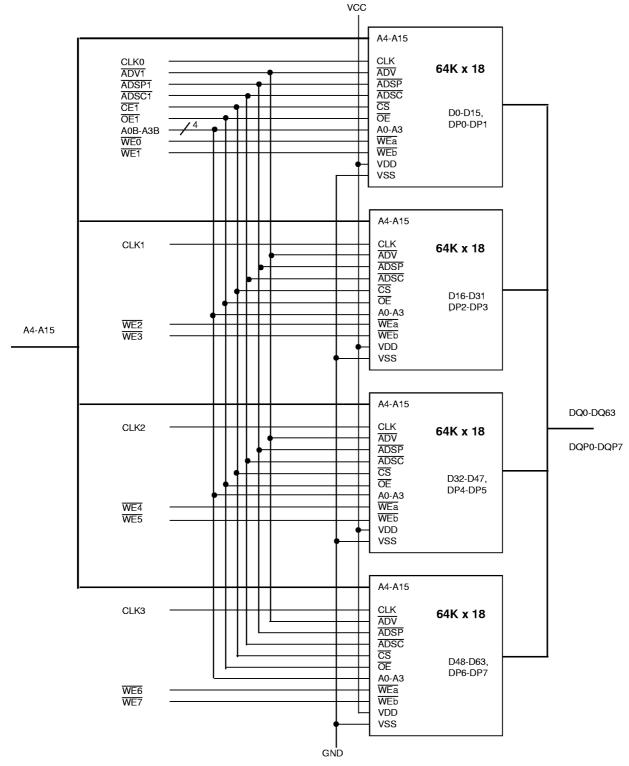
Part Number	Organization	Speed	Availability	Туре
IBM14N32722FPA-9	32K x 72	9 ns Access / 15 ns Cycle	On Request	Pentium
IBM14N32722FPA-11	32K x 72	11 ns Access / 15 ns Cycle	On Request	Pentium
IBM14N64722DPA-9	64K x 72	9 ns Access / 15 ns Cycle	On Request	Pentium
IBM14N64722DPA-11	64K x 72	11 ns Access / 15 ns Cycle	On Request	Pentium
IBM14N13722DPA-9	128K x 72	9 ns Access / 15 ns Cycle	On Request	Pentium
BM14N13722DPA-11	128K x 72	11 ns Access / 15 ns Cycle	On Request	Pentium
BM14N32724FPA-9	32K x 72	9 ns Access / 15 ns Cycle	On Request	PowerPC
BM14N32724FPA-11	32K x 72	11 ns Access / 15 ns Cycle	On Request	PowerPC
BM14N64724DPA-9	64K x 72	9 ns Access / 15 ns Cycle	Now	PowerPC
BM14N64724DPA-11	64K x 72	11 ns Access / 15 ns Cycle	Now	PowerPC
BM14N13724DPA-9	128K x 72	9 ns Access / 15 ns Cycle	Now	PowerPC
BM14N13724DPA-11	128K x 72	11 ns Access / 15 ns Cycle	Now	PowerPC
BM14N13722DPB-9	128K X 72	9 ns Access / 15 ns Cycle	On Request	Pentium
BM14N13722DPB-11	128K X 72	11 ns Access / 15 ns Cycle	On Request	Pentium
BM14N13724DPB-9	128K X 72	9 ns Access / 15 ns Cycle	On Request	PowerPC
BM14N13724DPB-11	128K X 72	11 ns Access / 15 ns Cycle	On Request	PowerPC
BM14N64726GAA-12	64K x 72	12 ns Access / 15 ns Cycle	On Request	Asynch.



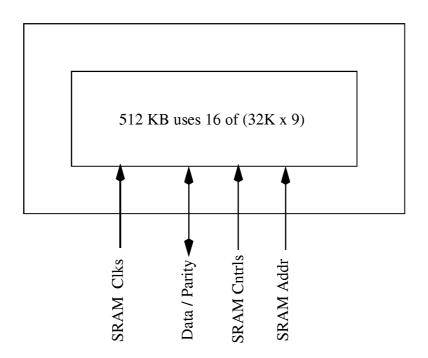
Block Diagram: Synchronous module 32K x 72


Block Diagram: Synchronous module 64K x 72


Block Diagram: Synchronous module 128K x 72 - Front Side


Note: The following nets are dotted front to back: WE0 through WE7, CLK0 through CLK3, DQ0 through DQ63, DQP0 through DQP7

Block Diagram: Synchronous module 128K x 72 - Back Side



Block Diagram: Asynchronous module 64K x 72

Asynchronous module (512KB)

Burst Sequence Truth Table Synchronous modules, interleave burst

External Address	A15-A2	(A1,A0)				
	AIJAZ	(0,0)	(0,1)	(1,0)	(1,1)	
1st Access	A15-A2	(0,0)	(0,1)	(1,0)	(1,1)	
2nd Access	A15-A2	(0,1)	(0,0)	(1,1)	(1,0)	
3rd Access	A15-A2	(1,0)	(1,1)	(0,0)	(0,1)	
4th Access	A15-A2	(1,1)	(1,0)	(0,1)	(0,0)	

Burst Sequence Truth Table Synchronous modules, linear burst

External Address	A15-A2	(A1,A0)				
External Address	AT5-AZ	(0,0)	(0,1)	(1,0)	(1,1)	
1st Access	A15-A2	(0,0)	(0,1)	(1,0)	(1,1)	
2nd Access	A15-A2	(0,1)	(1,0)	(1,1)	(0,0)	
3rd Access	A15-A2	(1,0)	(1,1)	(0,0)	(0,1)	
4th Access	A15-A2	(1,1)	(0,0)	(0,1)	(1,0)	

Presence Detect Table

Part Number	Module Burst Type			PD1	
IBM14N32722FPA	Interleaved	256KB	N.C.	GND	GND
IBM14N64722DPA	Interleaved	512KB	GND	GND	GND
IBM14N13722DPA	Interleaved	1MB	GND	N.C.	GND
BM14N32724FPA	Linear	256KB	N.C.	GND	N.C.
BM14N64724DPA	Linear	512KB	GND	GND	N.C.
BM14N13724DPA	Linear	1MB	GND	N.C.	N.C.
BM14N64726GAA	Asynch	512KB	GND	GND	NC

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units	Notes
Power Supply Voltage (3.3V)	V _{CC3}	-0.5 to 4.6	V	1, 2
Power Supply Voltage (5.0V)	V _{CC5}	-0.5 to 7	V	1, 3
Input Voltage	V _{IN}	-0.5 to 6.0	V	1
Output Voltage	V _{OUT}	-0.5 to V _{CC3} +0.5	V	1
Operating Temperature	T _{OPR}	0 to +70	°C	1
Storage Temperature	T _{STG}	-55 to +125	°C	1
Power Dissipation	P _D	6.0	W	1, 2
Power Dissipation	PD	8.0	w	1, 3
Short Circuit Output Current	I _{OUT}	50	mA	1

 Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. For synchronous modules only.

3. For asynchronous module only.

Recommended DC Operating Conditions (TA=0 to 70 C) : Synchronous modules

	Symbol	Min.	Тур.	Max.	Units	Notes
Supply Voltage	V _{CC3.3}	3.135	3.3	3.465	V	1, 4
Input High Voltage	V _{IH}	2.2	—	5.5	v	1, 2, 4
Input Low Voltage	VIL	-0.3	—	0.8	V	1, 3, 4
Output Current	Ι _{ουτ}		5	8	mA	4

1. All voltages referenced to $V_{\text{SS}}.$ All V_{DD} and V_{SS} pins must be connected.

2. $V_{IH}(Max)DC = 5.5 \text{ V}, V_{IH}(Max)AC = 6.0 \text{ V} \text{ (pulse width} \le 4.0 \text{ns})$

3. $V_{IL}(Min)DC = -0.3 \text{ V}, V_{IL}(Min)AC = -1.5 \text{ V} \text{ (pulse width } \leq 4.0 \text{ ns)}$

4. Input Voltage levels are tested to the following DC conditions: 1 microsecond cycle and 200 nanosecond set-up and hold times.

Capacitance (TA=0 to +70 C, VDD=3.3V 5%, f=1MHz) Maximum values: Synchronous modules

Parameter	Symbol	Test Condition	256KB	512KB	1MB	Units
Input Capacitance (Address)	C _{IN1}	$V_{IN} = 0V$	15	25	45	pF
Input Capacitance (Control, CE, OE)	C _{IN2}	$V_{IN} = 0V$	10	15	25	pF
Input Capacitance (WE, CLK)	C _{IN3}	$V_{IN} = 0V$	10	10	15	pF
Data I/O Capacitance (DQ0-DQ71)	C _{OUT}	V _{OUT} = 0V	10	10	15	pF

DC Electrical Characteristics (TA= 0 to +70 C, VDD=3.3V 5%): Synchronous modules

Parameter	Symbol	Min.	Max.	Units	Notes
Operating Current Average Power Supply Operating Current (OE = V _{IH} , I _{OUT} = 0)	I _{DD10} I _{DD12}		900	mA	1
Standby Current Power Supply Standby Current (CS2 = V _{IH} , CS2 = V _{IL} All other inputs = V _{IH} or V _{IL} , I _{OUT.} = 0, CLK at 100MHz)	I _{SB}		100	mA	1
Input Leakage Current Input Leakage Current, any input (V _{IN} = 0 &V _{DD})	lu		8	μΑ	
Output Leakage <u>Current</u> (V _{OUT} =0 &V _{DD} , OE = V _{IH})	I _{LO}		8	μA	
Output High Level Output "H" Level Voltage (I _{OH} =-8mA @ 2.4V)	V _{OH}	2.4		v	
Output Low Level Output "L" Level Voltage (I _{OL} =+8mA @ 0.4V)	V _{OL}		0.4	v	
1. I _{OUT} = Chip Output Current					

Recommended DC Operating Conditions (TA=0 to 70 C): Asynchronous Module

Parameter			Тур.		Units	
Supply Voltage (5.0V)	V _{CC}	4.75	5.0	5.25	V	1
Input High Voltage	V _{IH}	2.2	—	Vcc+0.3	V	1, 2
Input Low Voltage	VIL	-0.5	—	0.8	V	1, 3
Output Current	Гонт		-5	5	mA	

2. $V_{\rm H}({\rm Max}) = VCC + 0.5$

3. $V_{IL}(Min)DC$ = - 0.3 V, $V_{IL}(Min)AC$ = -2.0V (pulse width \leq 20.0 ns.)

Capacitance (TA=0 to 70 C, VCC5=5V 5%, f=1MHz) Maximum values: Asynchronous Module

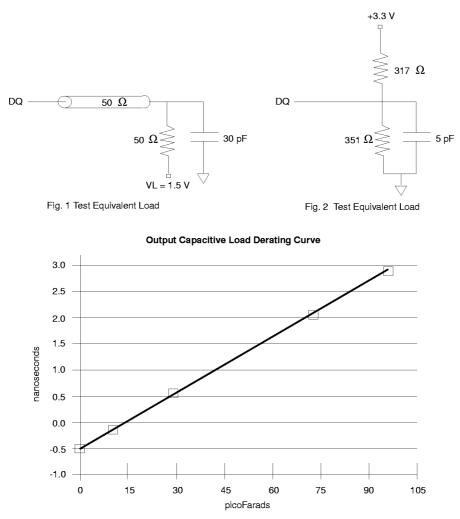
Parameter		Symbol	Test Condition	512KB	Units	
	A0 A3	C.	$V_{IN} = 0V$	50	ъС	
Input Capacitance (Address)	All others	U _{IN1}	$\mathbf{v}_{\text{IN}} = 0 \mathbf{v}$	100	p⊢	
Input Capacitance (CE, OE)		C _{IN2}	$V_{IN} = 0V$	65	pF	
Input Capacitance (WE)		C _{IN3}	$V_{IN} = 0V$	18	pF	
Data I/O Capacitance (DQ0-DQ71)		С _{оит}	V _{OUT} = 0V	10	pF	

DC Electrical Characteristics TA= 0 to +70 C, VCC5=5V 5%) : Asynchronous Module

Parameter	Symbol	Min.	Max.	Units	Notes
Operating Current @ 5.0V Maximum Power Supply Operating Current (Maximum V _{CC5} , I _{out} = 0)	I _{CC12}		1140	mA	1
Standby Current @ 5.0V Power Supply Standby Current (Maximum V _{CC5} , V _{IH} \leq CS ; All other inputs = V _{IH} or V _{IL} ; I _{out} = 0)	I _{SB}		640	mA	1
Input Leakage Current Input Leakage Current, any input (V _{IN} = 0 &V _{CC})	lu		40	μA	
Output Leakage Current (V _{OUT} =0 &V _{CC} , OE = V _{IH})	ILO		40	μA	
Output High Level Output "H" Level Voltage (I _{OH} =-8mA @ 2.4V)	V _{OH}	2.4		v	
Output Low Level Output "L" Level Voltage (I _{OL} =+8mA @ 0.4V)	V _{OL}		0.4	v	
1. I _{OUT} = Chip Output Current					

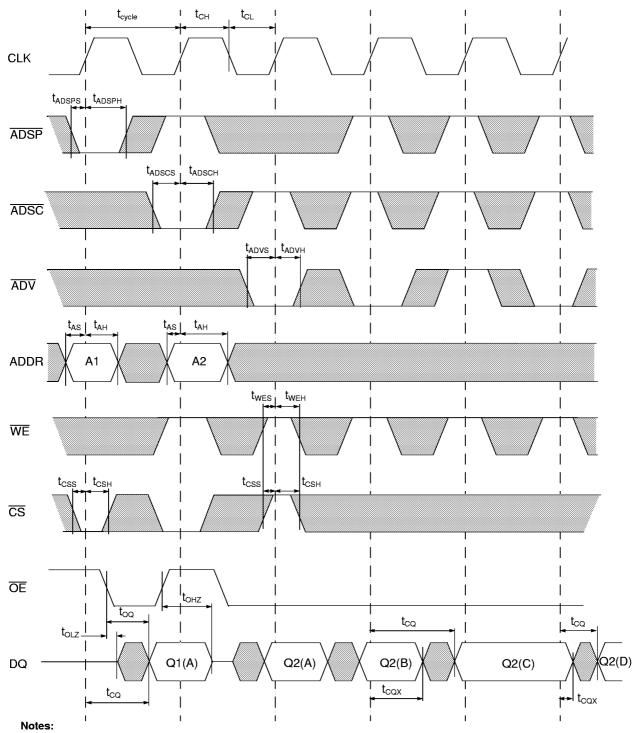
Parameter	Symbol	-9		-11		Notes
Faidhletei	Symbol	Min.	Max.	Min.	Max.	NOLES
Cycle Time	t _{CYCLE}	15.0	—	15.0	—	
Clock Pulse High	t _{сн}	3.0	—	3.0	—	
Clock Pulse Low	t _{c∟}	3.0	—	3.0	—	
Clock to Output Valid	tca	—	9.0	—	11.0	1
Address Status Controller Setup Time	t _{ADSCS}	2.5	—	2.5	—	
Address Status Controller Hold Time	tadsch	0.5	—	0.5	—	
Address Status Processor Setup Time	t _{adsps}	2.5	—	2.5	—	
Address Status Processor Hold Time	t _{adsph}	0.5	-	0.5	—	
Advance Setup Time	t _{ADVS}	2.5	÷ —	2.5	—	
Advance Hold Time	t _{ADVH}	0.5	<u> </u>	0.5	—	
Address Setup Time	t _{AS}	2.5	<u> </u>	2.5	—	
Address Hold Time	t _{AH}	0.5	—	0.5	—	
Chip Selects Setup Time	t _{CSS}	2.5	—	2.5	—	
Chip Selects Hold Time	t _{сsн}	0.5	—	0.5	—	
Write Enables Setup Time	t _{wes}	2.5	—	2.5	—	
Write Enables Hold Time	t _{wEH}	0.5	—	0.5	—	
Data In Setup Time	t _{DS}	2.5	—	2.5	—	
Data In Hold Time	t _{DH}	0.5	—	0.5	—	
Data Out Hold Time	t _{CQX}	3.0		3.0	<u> </u>	1
Clock High to Output High Z	t _{CHZ}	—	5.0	—	5.5	1, 2, 3
Clock High to Output Active	t _{CLZ}	2.5	—	2.5	—	1, 2, 3
Output Enable to High Z	t _{онz}	2.0	5.5	2.0	6.5	1, 2
Output Enable to Low Z	t _{oLZ}	0.25	—	0.25	—	1, 2
Output Enable to Output Valid	t _{oq}	-	5.0	—	6.0	1

AC Characteristics (TA=0 to +70 C, VDD=3.3V 5%, Units in nsec) Synchronous modules


1. See AC Test Loading figure on the next page.

2. Transitions are measured \pm 200 mV from steady state voltage.

3. At any given voltage and temperature, T_{CHZ} max is always less than T_{CLZ} min for a given device and from device to device. For any read cycle preceded by a write or deselect cycle, the data bus will transition glitch-free from HIZ to new RAM data.


AC Test Loading

The derating curve above is for a purely capacitive load on the output driver. For example, a part specified at 8ns access time will behave as though it has an 8.5 ns access time if a 30 pF load with no DC component was attached to the output driver. The access time guaranteed in the datasheets are based on a 50 ohm terminated test load. For unterminated loads the derating curve should be used. This curve is based on nominal process conditions with worst case parameters $V_{CC} = 3.14$ V, $T_a = 70$ °C.

Synchronous SRAM Timing Diagram (Burst Read)

1. Q1(A) and Q2(A) refer to output for Address A1 and A2 respectively.

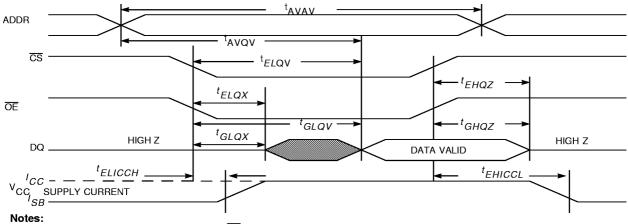
2. Q2(B),Q2(C) and Q2(D) refer to output from subsequent internal burst counter addresses.

©IBM Corporation. All rights reserved. Use is further subject to the provisions at the end of this document.

I t_{cycle} t_{CH} t_{CL} CLK tadsps | tadsph ADSP tADSCS | tADSCH ADSC t_{advh} t_{ADVS} t_{advh} ADV 1 t_{ADVS} tas tah t_{AS} t_{AH} A1 A2 ADDR t_{wen} t_{wes} WE t_{css} | t_{csH} t_{css} | t_{csн} \overline{CS} ŌĒ t_{onz} t_{DS} | t_{DH} t_{DS} | t_{DH} t_{DS} | t_{DH} t_{DS} I t_{DH} DQ D1(A) D2(A) D2(B) D2(B) t_{CLZ} □ t_{oHZ} ı I I

Synchronous SRAM Timing Diagram (Burst Write)

Notes:


1.D1(A) and D2(A) refer to data written to addresses A1 and A2.

2. D2(B) refers to data written to a subsequent internal burst counter address.

3. $\overline{\text{WE}}$ is a Don't Care when $\overline{\text{ADSP}}$ is sampled LOW.

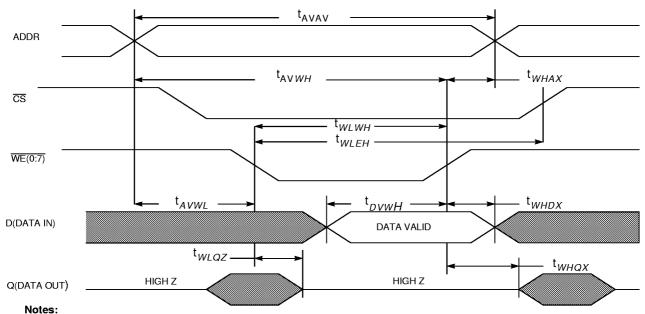
Asynchronous SRAM Timing Diagram (Read)

Addresses valid prior to or coincident with TE going low. .1.

Read Cycle

Parameter	Symbol	DA	TA		Notes	
		Min.	Max.	Unit		
Read Cycle Time	t _{AVAV}	12		ns	2	
Address Cycle Time	t _{AVQV}		12	ns		
Enable Access Time	t _{ELQV}		12	ns	3	
Output Enable Access Time	t _{GLQV}		6	ns		
Output Hold from Address Change	t _{AXQX}	3		ns	4, 5, 6	
Enable Low to Output Active	t _{ELQX}	4		ns	4, 5, 6	
Enable High to Output High-Z	t _{EHQZ}	0	7	ns	4, 5, 6	
Output Enable Low to Output Active	t _{GLQX}	0		ns	4, 5, 6	
Output Enable High to Output High-Z	t _{GHQZ}	0	6	ns	4, 5, 6	
Power Up Time	t _{ELICCH}	0		ns		
Power Down Time	t _{EHICCL}		12	ns		

WE(0:7) is high for read cycle.
 All timings are referenced from the last valid address to the first transitioning address.


3. Addresses valid prior to or coincident with \overline{CE} going low

4. At any given voltage and temperature, t_{EHQZ} (max) < t_{ELQX} (min), and t_{GHQZ} (max) < t_{GLQX} (min), both for a given device and from device to device.

5. Transition is measured ±500 mv from steady-state voltage.

6. This parameter is sampled and not 100% tested.

Asynchronous SRAM Timing Diagram (Write Cycle 1)

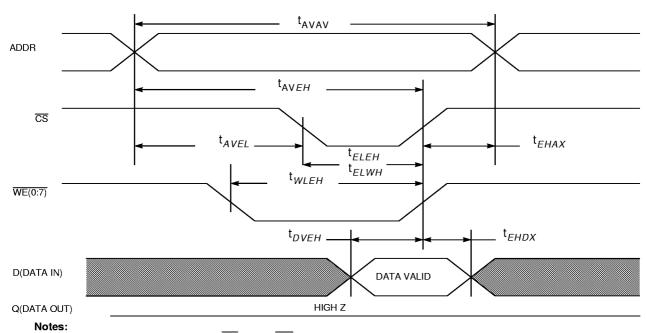
1. 2.

A write occurs during the overlap of \overline{OE} low and \overline{WE} low.. If \overline{OE} goes low coincident with or after \overline{WE} goes low, the output will remain in a high impedance state.

Write Cycle 1 (WE Controlled)

Parameter	Cumb al	DATA			
	Symbol	Min.	Max.	Unit	Notes
Write Cycle Time	t _{AVAV}	12		ns	1
Address Setup Time	t _{AVWL}	0		ns	
Address Valid to End of Write	t _{avwh}	10		ns	
Write Pulse Width	t _{WLWH} t _{WLEH}	10		ns	
Write Pulse Width G High	t _{WLWH} t _{WLEH}	9		ns	2
Data Valid to End of Write	t _{ovwн}	6		ns	
Data Hold Time	t _{whox}	0		ns	
Write Low to Output High-Z	t _{wLQZ}	0	6	ns	3, 4, 5
Write High to Output Active	t _{WHQX}	2		ns	3, 4, 5
Write Recovery Time	t _{WHAX}	0		ns	

1. All timings are referenced from the last valid address to the first transitioning address.

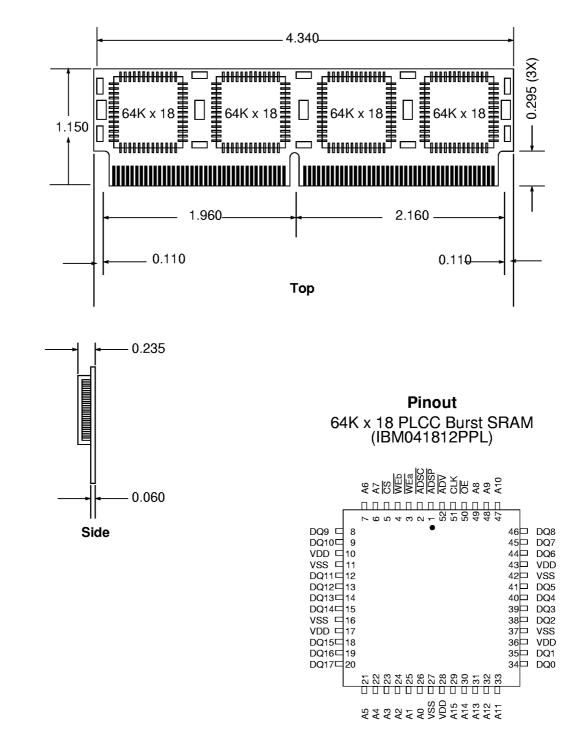

2. If $V_{IH} \leq \overline{OE}$, the output will remain in a high impedance state

3. At any given voltage and temperature , t_{WLOZ} (max) < t_{WHQX} (min), both for a given device and from device to device.

4. Transition is measured \pm 500 mv from steady state voltage.

5. This parameter is sampled and not 100% tested.

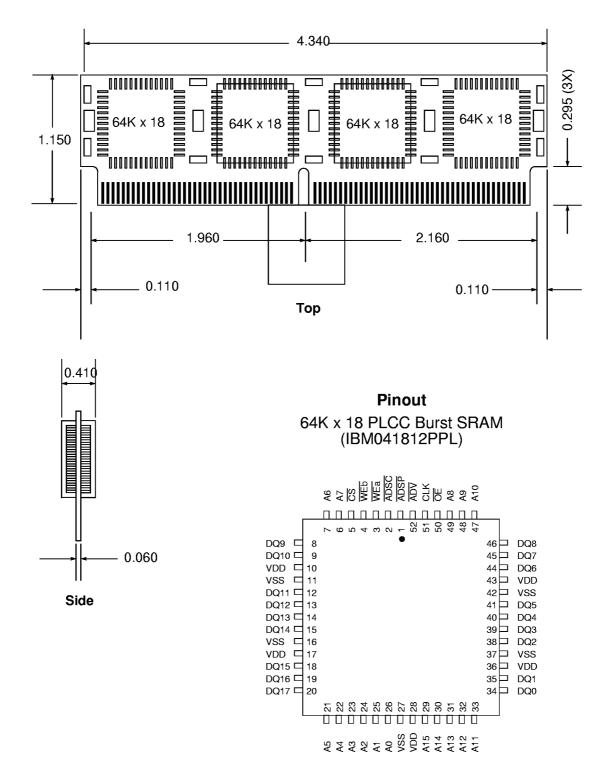
Asynchronous SRAM Timing Diagram (Write Cycle 2)

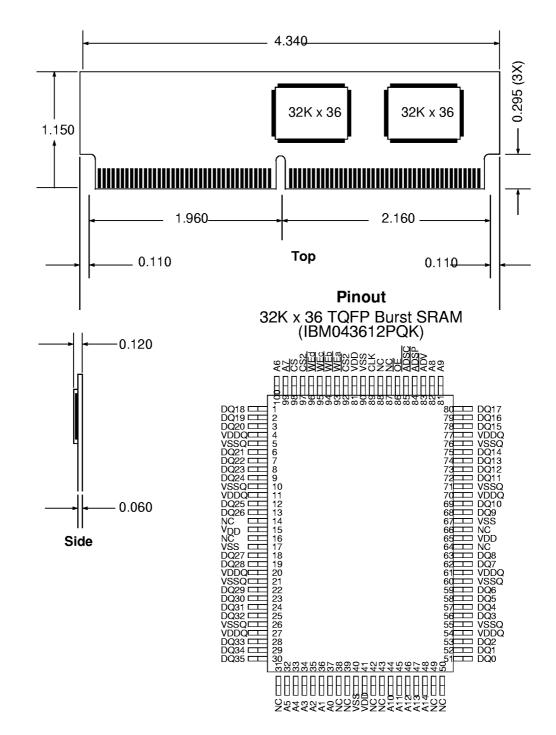

A write occurs during the overlap of \overline{OE} low and \overline{WE} low. 1.

Write Cycle 2 (OE Controlled)

Parameter	Cymhol		DATA		N
	Symbol	Min.	Max.	UIII	Notes
Write Cycle Time	t _{avav}	12		ns	
Address Setup Time	t _{AVEL}	0		ns	
Address Valid to End of Write	t _{AVEH}	10		ns	
Enable to End of Write	t _{ELEH} t _{ELWH}	9		ns	3, 4
Data Valid to End of Write	t _{DVEH}	6		ns	
Data Hold Time	t _{EHDX}	0		ns	
Write Recovery Time	t _{EHAX}	0		ns	

- A write occurs during the overlap of OE low and WE low
 All timings are referenced from the last valid address to the first transitioning address.
 If OE goes low coincident with or after WE goes low, the output will remain in a high impedance state.
 If OE goes high coincident with or before WE goes high, the output will remain in a high impedance state.




Layout Drawing: 512KB (64K x 72), 160-pin, Synchronous module

Layout Drawing: 1MB (128K x 72), 160-pin, Synchronous module

Layout Drawing: 256KB (32K x 72), 160-pin, Synchronous module

Front View:

Layout Drawing 512KB (64K x 72), 160-pin, Asynchronous module

4.340 (3X) Δ المعالمة المحالية المح محالية المحالية ý t þ t \$ ↓ \$ + ¥ + ╈ + Þ • **9** + 0.295 P Ψ 1.150 Lւ L. БŢ 0,0 Δ 1.960 2.160 0.110 — - 0.110 ____

Back View:

Revision Log

Rev	Contents of Modification
10/94	Initial Release
2/95	Added x36 module info., updated text and added part numbers
5/95	Added pin capacitance values and defined PD bits.
11/95	Updated DIMM speed offerings and other pertinent information.
12/95	Official release.
2/96	Update part numbers (added 1MB SE design).
4/98	re-release of document.