Dual Video/Memory Clock Generator #### **Features** - World standard ICS2494A has been reconfigured to allow 8 memory frequencies. - Mask-programmable frequencies - Pre-programmed versions for Industry Standard VGA chips - Glitch-free frequency transitions - Provision for external frequency input - Internal clock remains locked when the external frequency input is selected - Low power CMOS device technology - Small footprint 20-pin DIP or SOIC ### **Applications** - VGA-Super VGA-XGA video adapters - Workstations - 8514A-TMS34010-TMS34020 - Motherboard ### Description The Dot Clock Generator is an integrated circuit dual phase-locked loop frequency synthesizer capable of generating sixteen video dot clock frequencies and eight memory clock frequencies for use with high performance video display systems. Utilizing CMOS technology to implement all linear, digital and memory functions, the ICS2494/94A provides a low-power, small-footprint, low-cost solution to the generation of video dot clocks. Outputs are compatible with XGA, VGA, EGA, MCGA, CGA, MDA, as well as the higher frequencies needed for advanced applications in desktop publishing and workstation graphics. Provision is made via a single-level custom mask to implement customer-specific frequency sets. Phase-locked loop circuitry permits rapid glitch-free transitions between clock frequencies. #### **New Features** - Buffered XTAL Out - Integral loop filter components - Fast acquisition of selected frequencies, strobed or nonstrobed - Guaranteed performance up to 135 MHz - Excellent power supply rejection - Advanced PLL for low phase-jitter - Frequency change detection circuitry which enhances new frequency acquisition and eliminates problems caused by programs that rewrite frequency information. - Improved pinout easier board layout. ### **Pin Configuration** 20-Pin DIP or SOIC K-4, K-7 #### Notes: - In applications where the external frequency input is not specified, EXTFREQ must be tied to V_{SS}. - 2. ICS2494/94AM(SOIC) pinout is identical to ICS2494/94AN(DIP). 2494/94ARevA090694 4825758 0001153 6TO **=** B-11 ### **Circuit and Application Options** The ICS2494/94A will typically derive its frequency reference from a series-resonant crystal connected between pins 1 and 2. Where a high quality reference signal is available, such as in an application where the graphics subsystem is resident on the motherboard, this reference may directly replace the crystal. This signal should be coupled to pin 1. If the reference signal amplitude is less than 3.5 volts, a .047 microfarad capacitor should be used to couple the reference signal into XTAL1. Pin 2 must be left open. #### Power Supply Conditioning The ICS2494/94A is a member of the second generation of dot clock products. By incorporating the loop filter on chip and upgrading the VCO, the ease of application has been substantially improved over earlier products. If a stable and noise-free power supply is available, no external components are required. However, in most applications it is judicious to decouple the power supply as shown in Figures 1 or 2. Figure 1 is the normal configuration for 5 volt only applications. Which of the two provides superior performance depends on the noise content of the power supplies. In general, the configuration of Figure 1 is satisfactory. Figure 2 is the more conventional if a 12 volt analog supply is available, although the improved performance comes at a cost of an extra component. The cost of the discretes used in Figure 2, however, are less than the cost of Figure 1's discrete components. The number and differentiation of the analog and digital supply pins are intended for maximum performance products. In most applications, all VDDs may be tied together. The function of the multiple pins is to allow the user to realize the maximum performance from the silicon with a minimum degradation due to the package and PCB. At the frequencies of interest, the effects of the inductance of the bond wires and package lead frame are non-trivial. By using the multiple pins, ICS minimized the effect of packaging and minimized the interaction of the digital and analog supply currents. Figure 1 ### **Applications** #### Layout Considerations Utilizing the ICS2494/94A in video graphics adapter cards or on PS2 motherboards is simple but does require precautions in board layout if satisfactory jitter-free performance is to be realized. Care should be exercised in ensuring that components not related to the ICS2494/94A do not share its ground. In applications utilizing a multi-layer board, VSS should be directly connected to the ground plane. Multiple pins are utilized for all analog and digital VSS and VDD connections to permit extended frequency VCLK operation to 135 MHz. However, in all cases, all VSS and VDD pins should be connected. ### Figure 2 #### Frequency Reference The internal reference oscillator contains all of the passive components required. An appropriate series-resonant crystal should be connected between XTAL1 (1) and XTAL2 (2). In IBM-compatible applications this will typically be a 14,31818 MHz crystal, but fundamental mode crystals between 10 MHz and 25 MHz have been tested. Maintain short lead lengths between the crystal and the ICS2494/94A. In some applications, it may be desirable to utilize the bus clock. If the signal amplitude is equal to or greater than 3.5 volts, it may be connected directly to XTAL1 (1). If the signal amplitude is less than 3.5 volts, connect the clock through a .047 microfarad capacitor to XTAL1 (1), and keep the lead length of the capacitor to XTAL1 (1) to a minimum to reduce noise susceptibility. This input is internally biased at VDD/2. Since TTL compatible clocks typically exhibit a VOH of 3.5V, capacitively coupling the input restores noise immunity. The ICS2494/94A is not sensitive to the duty cycle of the bus clock; however, the quality of this signal varies considerably with different motherboard designs. As the quality of this signal is typically outside of the control of the graphics adapter card manufacturer, it is suggested that this signal be buffered on the graphics adapter board. XTAL2 (2) must be left open in this configuration. #### **Buffered XTALOUT** In motherboard applications it may be desirable to have the ICS2494/94A provide the bus clock for the rest of the system. This eliminates the need for an additional 14.31818 MHz crystal oscillator in the system, saving money as well as board space. To do this, the XTALOUT (18) output should be buffered with a CMOS driver. #### **Output Circuit Considerations** As the dot clock is usually the highest frequency present in a video graphics system, consideration should be given to EMI. To minimize problems with meeting FCC EMI requirements, the trace which connects VCLK (19) or MCLK (12) and other components in the system should be kept as short as possible. The ICS2494/94A outputs have been designed to minimize overshoot. In addition it may be helpful to place a ferrite bead in these signal paths to limit the propagation of high order harmonics of this signal. A suitable device would be a Ferroxcube 56-590-65/4B or equivalent. This device should be placed physically close to the ICS2494/94A. A 33 to 47 Ohm series resistor, sometimes called source termination, in this path may be necessary to reduce ringing and reflection of the signal and may reduce phase-jitter as well as EMI. #### Digital Inputs FS0 (4), FS1 (5), FS2 (7), and FS3 (8) are the TTL compatible frequency select inputs for the binary code corresponding to the frequency desired. STROBE (6), when high, allows new data into the frequency select latches; and when low, prevents address changes per Figure 3. The internal power-on-clear signal will force an initial frequency code corresponding to an all zeros input state. MS0 (9), MS1 (11) and MS2 (3) are the corresponding memory select inputs and are not strobed. B-13 # ICS2494 ICS2494A ## **Absolute Maximum Ratings** | Supply Voltage | V _{DD} | 0.5V to +/V | |------------------------|-----------------|---------------------------------| | Input Voltage | V _{IN} | \dots -0.5V to V_{DD} +0.5V | | Output Voltage | Vout | 0.5V to VDD+0.5V | | Clamp Diode Current | | | | Output Current per Pin | Iout | ±50mA | | Operating Temperature | To | 0 °C to 70 °C | | Storage Temperature | Ts | 85 °C to +150 °C | | Power Dissipation | P _D | 500mW | | | | | Values beyond these ratings may damage the device. This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applications of any voltage higher than the maximum rated voltages. For proper operation it is recommended that V_{IN} and V_{OUT} be constrained to $>= V_{SS}$ and $<=V_{DD}$. ## DC Characteristics (0 °C to 70 °C) | SYMBOL | PARAMETER | MIN | MAX | UNITS | CONDITIONS | |-------------------|----------------------------|----------|-----------------|-------|---------------------------------| | V_{DD} | Operating Voltage Range | 4.0 | 5.5 | V | | | V _{IL} | Input Low Voltage | Vss | 0.8 | V | $V_{dd} = 5V$ | | V _{IH} | Input High Voltage | 2.0 | V _{dd} | V | $V_{dd} = 5V$ | | I _{IH} | Input Leakage Current | <u>-</u> | 10 | иA | $V_{in} = V_{cc}$ | | Vol | Output Low Voltage | - | 0.4 | V | $I_{ol} = 4.0 \text{ mA}$ | | Voh | Output High Voltage | 2.4 | | V | $I_{oh} = 4.0 \text{ mA}$ | | I _{DD} | Supply Current | | 35 | mA_ | $V_{dd} = 5V$, $VCLK = 80$ MHz | | Rup * | Internal Pull-up Resistors | 50 | 200 | K Ohm | $V_{dd} = 5V$, $V_{in} = 0V$ | | Cin | Input Pin Capacitance | _ | 8 | pF | $F_c = 1 \text{ MHz}$ | | Cout | Output Pin Capacitance | | 12 | pF | $F_c = 1 \text{ MHz}$ | ^{*} The following inputs have pull-ups: FS0-3, MS0-1, STROBE. ## Frequency Pattern Availability ICS offers the largest variety of standard frequency patterns in the industry, supporting all popular VGA controller devices. The attached listing provides the selection as of this publication date. Contact your local ICS sales office for latest frequency pattern availability. ## **AC Timing Characteristics** The following notes apply to all parameters presented in this section: - 1. Xtal Frequency = 14.31818 MHz - 2. $T_C = 1/\hat{F}_C$ - 3. All units are in nanoseconds (ns). - 4. Rise and fall time is between 0.8 and 2.0 VDC. - 5. Output pin loading = 25pF - 6. Duty cycle is measured at 1.4V. - 7. Supply Voltage Range = 4.0 to 5.5 Volts 8. Temperature Range = 0 °C to 70 °C | SYMBOL | PARAMETER | MIN | MAX | NOTES | |----------|---------------------------|-------------|-----|------------------------| | | STROB | E TIMING | | | | Tpw | Strobe Pulse Width | 20 | _ | | | Tsu | Setup Time Data to Strobe | 10 | _ | | | Thd | Hold Time Data to Strobe | 10 | _ | | | <u>.</u> | MCLK AND V | CLK TIMINGS | | | | Tr | Rise Time | _ | 3 | Duty Cycle 40% min. to | | Tf | Fall Time | _ | 3 | 60% max. | | - | Frequency Error | | 0.5 | % | | - | Maximum Frequency | | 135 | MHz | | - | Propagation Delay for | | 15 | ns | | | Pass Through Frequency | | | | Figure 3 ## **Ordering Information** ICS2494AN-XXX or ICS2494AM-XXX Example: B-15 ## ICS2494/2494A ### **ICS2494 Standard Patterns** ICS produces a selection of standard pattern ICS2494's pre-programmed for compatibility with many popular VGA chipsets. Custom patterns are also available, although a significant volume commitment and/or one-time mash charge will apply. Contact ICS sales for details. | ICS Part
Number | ICS2494-
236
ICS2494A-
310* ¹ | ICS 9294-
237
ICS2494A-
304* ² | ICS2494-
240 | ICS2494-
244
ICS2494A
317* ³ | ICS2494-
245/307 | ICS2494-
247 | ICS2494-
253 | IC\$2494-
256 | |-------------------------------------|---|--|---------------------------------------|--|---------------------|-------------------------|--------------------|------------------------| | Compatible VGA Chipsets | Cirrus Logic
GD6410 | Tseng Labs
ET4000
ET400-W32
Acer M3125 | Texas. Instr.
TMS34010
TMS34020 | Motherboard
Applications
(CPU Clocks) | | Cirrus Logic
GD 5320 | NCR
77C22E | S3
86C911
86C924 | | Video Clock
Address
(HEX) | Frequency
(MHz) | | XTAL | 50.350 | 25.175 | 20.000 | 50,350 | XTAL | 25.175 | 25.175 | | 0 | 65.028 | 56.644 | 28.332 | 24.000 | 56.644 | 16.257 | 28.322 | 28.322 | | 2 | EXTFREQ | 65.000 | 28.636 | 32.000 | 65.000 | EXTFREQ | 40,000 | 40.000 | | 3 | 36.000 | 72.000 | 36.000 | 40.000 | 72.000 | 32.514 | 65.000 | EXTFREQ | | 4 | 25.175 | 80.000 | 40,000 | 50.000 | 80.000 | 25.175 | 44.900 | 50.000 | | 5 | 28.322 | 89.800 | 42,954 | 66.667 | 89.800 | 28,322 | 50.000 | 77.000 | | 6 | 24.000 | 63.000 | 44,900 | 80.000 | 63.000 | 24.000 | 130.000 | 36.000 | | 7 | 40.000 | 75.000 | 57,272 | 100.000 | 75.000 | 40.000 | 75.000 | 44.889 | | 8 | 44.900 | 25.175 | 60.000 | 54.000 | 25.175 | XTAL | 25.175 | 130,000 | | 9 | 50.350 | 28,322 | 63.960 | 70.000 | 28.322 | 16.257 | 28.322 | 120.000 | | Á | 16.257 | 31,500 | 75.000 | 90.000 | 31.500 | EXTFREQ | EXTFREO | 80.000 | | В | 32.514 | 36,000 | 80.000 | 110.000 | 36.000 | 36.000 | EXTFREO | 31.500 | | C | 56.644 | 40.000 | 85.000 | 25.000 | 40.000 | 25.175 | 60.000 | 110.000 | | D | 20.000 | 44.900 | 99.000 | 33.333 | 44.900 | 28.322 | 80.000 | 65.000 | | E | 41.539 | 50.000 | 102.000 | 40.000 | 50.000 | 24.000 | EXTFREQ | 75.000 | | F | 80.000 | 65.000 | 108.000 | 50.000 | 77.500 | 40.000 | EXTFREQ | 72.000 | | T 1981 (1884) () | STANKER SER | | | | TENST STEET | | 23+44HT C 26274 | | | Memory
Clock
Address
(HEX) | Frequency
(MHz) | Frequency
(MHz) | Frequency
(MHz) | Frequency (MHz) | Frequency
(MHz) | Frequency
(MHz) | Frequency
(MHz) | Frequency
(MHz) | | (HEX) | 32,900 | 40,000 | 64.000 | 16,000 | 40,000 | 31.000 | 50.000 | 55.000 | | 1 | 35.600 | 41.612 | 40.000 | 24.000 | 41.612 | 36.400 | 60.000 | 75.000 | | 2 | 43.900 | 44.744 | 48.000 | 50,000 | 44,744 | 43.900 | 65.000 | 70.000 | | 3 | 49.100 | 50,000 | 60.000 | 66.667 | 50.000 | 49.100 | 75.000 | 80.000 | ^{*1} ICS2494A-310 directly replaces ICS2494-236. Standard frequencies shown have been specified by and are supported by the respective VGA manufacturer. All standard patterns shown above use 14.31818 MHz as the input reference frequency. ICS2494M-XXX or ICS2494N-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) ICS2494AM-XXX or ICS2494AN-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) Order info: ^{*2} ICS2494A-304 directly replaces ICS2494-237. ^{*3} ICS2494A-317 directly replaces ICS2494-244. ^{*4} ICS2494A-318 directly replaces ICS2494-266. | ICS Part | ICS2494- | ICS2494- | ICS2494 | ICS2494- | ICS2494- | ICS2494- | ICS2494- | ICS2494- | ICS2494- | |-----------------|--------------------|------------------|--------------------------------------|-----------|-----------|------------------|-----------|-----------|--------------------| | Number | 260 | 263 | 266
ICS2494-
318* ⁴ | 271/321 | 273 | 275 | 277 | 280 | 281 | | Compatible | Weitek | NCR | Cirrus Logic | | Headland | S3 | NCR | \$3 | Tseng | | VGA
Chipsets | W5086
W5186 | 77C22E | GD5410 | | HT216 | 86C801 | 77C22E+ | 86C801 | _ | | Chipsets | W 3100 | 1 | | | HT216-32 | 86C805
86C928 | | 86C805 | | | Video Clock | | | | | | 00C928 | | | | | Address | Frequency | (HEX) | (MHz) | 0 | 50.350 | 25.175 | 30.250 | 25.175 | 25.175 | 25,175 | 25.175 | 25.175 | 50.350 | | 1 | 56.644 | 28.322 | 65.000 | 28.322 | 28.322 | 28.322 | 28.322 | 28.322 | 56,644 | | 2 | 33.250 | 36.000 | 85.000 | EXT | 40.000 | 40.000 | 36.000 | 40.000 | 65.000 | | 3 | 52.000 | 65.000 | 36.000 | 44.900 | 32,500 | EXTFREO | 65.000 | EXT | 72.000 | | 4 | 80.000 | 44.900 | 25.175 | 41.539 | 50.350 | 50.000 | 44.900 | 50.000 | 80,000 | | 5 | 63.000 | 50.000 | 283.322 | 78.000 | 65.000 | 77.000 | 50.000 | 77.000 | 89.800 | | 6 | EXTFREQ | 80.000 | 34.000 | 79.200 | 38.000 | 36.000 | 80.000 | 36.000 | 63,000 | | 7 | 75.000 | 75.000 | 40.000 | 80.000 | 44.900 | 44.889 | 75.000 | 44.889 | 75,000 | | 8 | 25.175 | 25.175 | 44.900 | 31.469 | 31.500 | 130.000 | 56.644 | 130.000 | 83.078 | | 9 | 28.322 | 28.322 | 50.350 | 35.402 | 36.000 | 120.000 | 63.000 | 120.000 | 93.463 | | Α . | . 31.500 | EXTFREO | 31.500 | EXTFREO | 80.000 | 80,000 | 72.000 | 80.000 | 100,000 | | В | 36.000 | EXTFREO | 32.500 | 56.125 | 63,000 | 31.500 | 130.000 | 31.500 | 104.000 | | C | 40.000 | 60.000 | 63.000 | 51.924 | 50,000 | 110.000 | 90,000 | 110.000 | 108.000 | | D | 44.900 | 80.000 | 72.000 | 91.000 | 100.00 | 65.000 | 100,000 | 65,000 | 120.000 | | E | 50.000 | EXTFREO | 75.000 | 87.406 | 76.000 | 75,000 | 110.000 | 75.000 | 130.000 | | F | 65.000 | EXTFREO | 80.000 | 36.000 | 110.000 | 94.500 | 120.000 | 94.500 | 134,700 | | | Per Louis Tolk III | ded a de la comp | | | | | | | | | Memory | | | | | | | | | - 10 May 20 - 10 M | | Clock | Frequency | Address | (MHz) | (HEX) | 10.000 | 70.000 | | | | | | | | | 0 | 40.000 | 50.000 | 36.000 | 51.924 | 70.000 | 45.000 | 50.000 | 55.000 | 50.000 | | 1 | 33,333 | 40.000 | 44.000 | 41.539 | 63.830 | 38.000 | 60.000 | 60.000 | 55.000 | | 2 | 45.000 | 65.000 | 49.000 | 44.900 | 60.000 | 52.000 | 65.000 | 70.000 | 60.000 | | 3 | 50.000 | 75.000 | 40.000 | 56.125 | 81.000 | 50.000 | 75.000 | 65.000 | 65.000 | ^{*1} ICS2494A-310 directly replaces ICS2494-236. Standard frequencies shown have been specified by and are supported by the respective VGA manufacturer. All standard patterns shown above use 14.31818 MHz as the input reference frequency. Order info: ICS2494M-XXX or ICS2494N-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) ICS2494AM-XXX or ICS2494AN-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) ^{*2} ICS2494A-304 directly replaces ICS2494-237. ^{*3} ICS2494A-317 directly replaces ICS2494-244. ^{*4} ICS2494A-318 directly replaces ICS2494-266. ## ICS2494/2494A | TCC2404A | IC\$2404 | IC\$2494_ | ICS2494A- | ICS2494A- | ICS2494A- | ICS2494A- | |-----------------------------------|--|--|-----------------|--|-----------|--| | | | | | 320 | 322 | 324 | | | | | | AdvanceLogic | | Tseng Labs | | | | | | ALG2101 | | ET4000 | | 60C924 | | instruments | | ALG2201 | | ET4000 W32 | | | OBOTIE | | | | | | | Frequency | | | (MHz) | (MHz) | (MHz) | (MHz) | (MHz) | | | | 12.273 | 25.175 | 50.350 | 20.000 | 50.000 | | | | 13.500 | 28.322 | 56.644 | 20.480 | 56.644 | | | | 14.750 | 40.000 | 89.800 | 24.576 | 65.000 | | | | 25.175 | 72.000 | 72.000 | 24.704 | 72.000 | | | | 28.322 | 50.000 | 75.000 | 25.216 | 80.000 | | | | | 77.500 | 65.000 | 25.248 | 89.800 | | | | | 36,000 | 63.000 | 25.600 | 63.000 | | | | 44.900 | 44.900 | 80.000 | 26.000 | 75.000 | | | 101077 | | 63,000 | 57.272 | 28.800 | 83.078 | | | | | 100.000 | 85.000 | 29.491 | 93.463 | | | | | 80,000 | 94.000 | 30.720 | 100.000 | | | | | 31,500 | 96.000 | 32.768 | 104.000 | | | | | 110.000 | 100.000 | 33.6000 | 108,000 | | | | | | 108.000 | 44.736 | 120.000 | | | | | | 110.000 | 9.600 | 130.000 | | | | | | 77.000 | 20.500 | 134.700 | | 34.JUJ | 98-98-50 Julio Jan (10) | 15044 - 120 | | | | The state of s | | 11 pm - 12 13 2 2 2 2 2 3 3 1 1 1 | | The state of s | | | 1 | ļ | | Fraguency | Frequency | Frequency | Frequency | Frequency | Frequency | Frequency | | | | | (MHz) | (MHz) | (MHz) | (MHz) | | (141112) | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | | | | | | 55,000 | 32,900 | 32.000 | 48.000 | 76.000 | 15.360 | 50.000 | | | | | 52.500 | 80.000 | 13.947 | 56.000 | | | | | 55.000 | 85.000 | 13.947 | 60.000 | | 80.000 | 39,900 | 60.000 | 50,000 | 90.000 | 24.000 | 65.000 | | | ICS2494A- 305 \$3 86C924 Frequency (MHz) 25.175 28.322 40.000 77.000 36.000 31.500 110.000 65.000 94.500 Frequency (MHz) 55.000 75.000 75.000 75.000 75.000 75.000 75.000 | 305 306 S3 Cirrus Logic GD6410 GD6412 Frequency (MHz) (MHz) 25.175 XTAL 28.322 65.000 40.000 EXTFREQ EXTFREQ 36.000 50.000 25.175 77.000 28.322 36.000 24.000 44.889 40.000 130.000 44.900 120.000 50.350 80.000 16.257 31.500 32.514 110.000 56.644 65.000 20.000 75.000 41.539 94.500 80.000 Frequency (MHz) Frequency (MHz) Frequency (MHz) GD6410 Frequency (MHz) 55.000 32.900 75.000 35.600 75.000 32.900 75.000 33.900 75.000 33.900 75.000 35.600 75.000 33.900 | 305 306 314 | Signature Sign | S3 | 10,52494 | ^{*1} ICS2494A-310 directly replaces ICS2494-236. Standard frequencies shown have been specified by and are supported by the respective VGA manufacturer. All standard patterns shown above use 14.31818 MHz as the input reference frequency. Order info: ICS2494M-XXX or ICS2494N-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) ICS2494AM-XXX or ICS2494AN-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) ^{*2} ICS2494A-304 directly replaces ICS2494-237. ^{*3} ICS2494A-317 directly replaces ICS2494-244. ^{*4} ICS2494A-318 directly replaces ICS2494-266. | ICS Part
Number | ICS2494-
325 | ICS2494-
326 | ICS2494-
330 | ICS2494- | ICS2494- | ICS2494 | ICS2494- | |--------------------|-----------------|-----------------|-----------------|--|--------------|---|---------------------------| | Compatible | Maxtek | 320 | .330 | 334 | | | | | VGA | Mariek | | | | | | | | Chipsets | | | | 1 | | | | | Video Clock | | | | | | | | | Address | Frequency | Frequency | Frequency | Frequency | Frequency | P | _ | | (HEX) | (MHz) | (MHz) | (MHz) | (MHz) | (MHz) | Frequency
(MHz) | Frequency
(MHz) | | . 0 | 25.175 | 66.000 | 18.432 | 25,175 | (MILE) | (MITZ) | (MHZ) | | 1 | 28,322 | 62.000 | 31.470 | 28.322 | | | | | 2 | 31.500 | 61.236 | 50.000 | 31.500 | | | | | 3 | 36.000 | 61.000 | EXTFREO | 36.000 | | | | | 4 | 40.000 | 60,500 | 48,000 | 40.000 | | | | | 5 | 44.900 | 60.000 | 54.000 | 44.900 | · | | | | 6 | 50.350 | 59,300 | 59,200 | 50.000 | | | | | 7 | 65.000 | 59.000 | 75,500 | 65,000 | | | | | 8 | 56.644 | 58.968 | 96,000 | 75.000 | | | | | 9 | 72.00 | 57,200 | 108.778 | 77.500 | | | | | A | 75.000 | 56.200 | 73,410 | 80,000 | | | | | В | 77.000 | 55,500 | 50.490 | 90.000 | | | | | С | 80.000 | 40,000 | 110.439 | 100,000 | | | | | D | 94.500 | 38.200 | 100.000 | 110.000 | | | | | Е | 120.000 | 32.500 | 125,000 | 126,000 | | | | | F | 108.000 | 30.500 | 135,000 | 125 000 | | | | | | | | 133.000 | rid VIVIO | The Transfer | TERMINING ASSESSED FROM | | | Memory | | | | | T | M. B.C.R. Marketon, J.A. P. P. S. St. Ben | 4-21-20-54 CHR. 24-21-18C | | Clock | Frequency | Address | (MHz) | (HEX) | | | | ,, | \ | \ | (141112) | | 0 | 45.000 | 48.000 | 47.720 | 60.000 | | | | | 11 | 50.000 | 50.000 | 45.000 | 50.000 | | | | | 2 | 65.000 | 40,000 | 40.000 | 55.000 | | | | | 3 | 70.000 | 60.000 | 50.000 | 50.000 | | | | ^{*1} ICS2494A-310 directly replaces ICS2494-236. Standard frequencies shown have been specified by and are supported by the respective VGA manufacturer. All standard patterns shown above use 14.31818 MHz as the input reference frequency. Order info: ICS2494M-XXX or ICS2494N-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) ICS2494AM-XXX or ICS2494AN-XXX (M= SOIC pkg., N= DIP pkg., XXX= Pattern number) ^{*2} ICS2494A-304 directly replaces ICS2494-237. ^{*3} ICS2494A-317 directly replaces ICS2494-244. ^{*4} ICS2494A-318 directly replaces ICS2494-266.