16-BIT CMOS MICROPROCESSOR SLICE IDT49C401 IDT49C401A MICROSLICE ™ PRODUCT #### **FEATURES:** - Fast - 30% faster than four 2901Cs and one 2902A - Low Power CEMOS[™] - Military: 225mA (max.) - Commercial: 180mA (max.) - Functionally equivalent to four 2901s and one 2902 - Pin-compatible, performance-enhanced replacement for IMI4X2901B - Independent, simultaneous access to two 16-word x 16-bit register files - Expanded destination functions with eight new operations allowing Direct Data to be loaded directly into the dual-port RAM and Q Register - Cascadable - Available in 64-pin DIP - Military product compliant to MIL-STD-883, Class B #### DESCRIPTION: The IDT49C401s are high-spec fully cascadable 16-bit CMOS microprocessor slice units which con bine the standard functions of four 2901s and a 2902 with actional control features aimed at enhancing the performance of bit-suce microprocessor designs. the normal functions associated The IDT49C401s include gn: (a) a 3-bit instruction field (l_0 , with standard 2901 bit-sli rand selection for the ALU, (b) a I₁, I₂) which controls the used to control the eight possi-3-bit microinstruction and (c) xteen destination control functions ble functions of the pcode inputs (I₆, I₇, I₈, I₉). Eight of the which are selecte sixteen destination nctions reflect the standard 2901 opadditional destination control functions eration, while Q Register up and down, loading the RAM or Q allow for shifting the D inputs without going through the ALU Register g s of destination functions with the RAM A port and new d e Youtput pins of the device. Also featured is an output port RAM that contains 16 words by 16 bits. on-chip O1s are fabricated using CEMOS, a CMOS technology and for high performance and high reliability. These permants chanced devices feature both bipolar speed and bipolar drive capabilities, while maintaining exceptional microinstructure. CEMOS and MICROSLICE are trademarks of Integrated Device Technology, Inc. MILITARY AND COMMERCIAL TEMPERATURE RANGES **DECEMBER 1987** © 1987 Integrated Device Technology, Inc. DSC-9010/- #### PIN CONFIGURATION #### PIN DESCRIPTIONS | PIN NAME | 1/0 | DESCRIPTION | |--------------------------------------|-----|---| | A ₀ -A ₃ | | Four address inputs to the register file which selects one register and displays its contents through the A port. | | B ₀ -B ₃ | 1 | Four address inputs to the register file which selects one of the registers in the file, the contents of which is displayed through the B port. It also selects the location into which new data can be written when the clock goes LOW. | | I ₀ -I ₉ | ı | Ten instruction control lines which determine what data source will be applied to the ALU I $(0, 1, 2)$, what function the ALU will perform $(3, 4, 5)$ and what data is to be deposited in the Q Register or the register file I $(6, 7, 8, 9)$. Original 2901 destinations are selected if I $_9$ is disconnected. In this mode, proper I $_9$ bias is controlled by an internal pullup resistor to V_{CC} . | | D ₀ -D ₁₅ | 1 | Sixteen-bit direct data inputs which are the data source for entering external data into the device ALU, Q Register or RAM. D_0 is the LSB. | | Y ₀ -Y ₁₅ | 0 | Sixteen three-state output lines which, when enabled, display either the sixteen outputs of the ALU or the data on the A port of the register stack. This is determined by the destination code 1(6, 7, 8, 9). | | G/F ₁₅ | 0 | A multipurpose pin which indicates the carry generate (\overline{G}) function at the least significant and intermediate slices or as F_{15} , the most significant ALU output (sign bit). \overline{G}/F_{15} selection is controlled by the MSS pin. If MSS = HIGH, F_{15} is enabled. If MSS = LOW, \overline{G} is enabled. | | F = 0 | 0 | Open drain output which goes HIGH if the F ₀ -F ₁₅ ALU outputs are all LOW. This indicates that the result of an ALU operation is zero (positive logic). | | Cn | I | Carry-in to the internal ALU. | | Cn + 16 | 0 | Carry-out of the internal ALU. | | Q ₁₅
RAM ₁₅ | 1/0 | Bidirectional lines controlled by $l_{(6,7,8,9)}$. Both are three-state output drivers connected to the TTL-compatible inputs. When the destination code on $l_{(6,7,8,9)}$ indicates an up shift, the three-state outputs are enabled, the MSB of the Q Register is available on the Ω_{15} pin and the MSB of the ALU output is available on the RAM $_{15}$ pin. When the destination code indicates a down shift, the pins are the data inputs to the MSB of the Q Register and the MSB of the RAM. | | Q ₀
RAM ₀ | 1/0 | Both bidirectional lines function identically to Q ₁₅ and RAM ₁₅ lines, except they are the LSB of the Q Register and RAM. | | ŌĒ | 1 | Output enable. When pulled HIGH, the Y outputs are OFF (high impedance). When pulled LOW, the Y outputs are enabled. | | P/OVR | 0 | A multipurpose pin which indicates the carry propagate (P) output for performing a carry lookahead operation or overflow (OVR) the Exclusive-OR of the carry-in and carry-out of the ALU MSB. OVR, at the most significant end of the word, indicates that the result of an arithmetic two's complement operation has overflowed into the sign bit. P/OVR selection is controlled by the MSS pin. If MSS = HIGH, OVR is enabled. If MSS = LOW, P is enabled. | | СР | 1 | The clock input. LOW-to-HIGH clock transitions will change the Q Register and the register file outputs. Clock LOW time is internally the write enable time for the 64 x 16 RAM which compromises the master latches of the register file. While the clock is LOW, the slave latches on the RAM outputs are closed, storing the data previously on the RAM outputs. Synchronous MASTER-SLAVE operation of the register file is achieved by this. | | MSS | ı | When HIGH, enables OVR and F ₁₅ on the P/OVR and G/F ₁₅ pins. When LOW, enables G and P on these pins. If left open internal pullup resistor to V _{CC} provides declaration that the device is the most significant slice and will define pins as OVR and F ₁₅ . | #### **DEVICE ARCHITECTURE:** The IDT49C401 CMOS bit-slice microprocessor is configured sixteen bits wide and is cascadable to any number of bits (16, 32, 48, 64). Key elements which make up these 16-bit microprocessor slices are the (1) register file (16 x 16 dual-port RAM) with shifter, (2) ALU and (3) Q Register and shifter. REGISTER FILE-A 16-bit data word from one of the 16 RAM registers can be read from the A port as selected by the 4-bit A address field. Simultaneously, the same data word or any other word from the 16 RAM registers can be read from the B port as selected by the 4-bit B address field. New data is written into the RAM register location selected by the B address field during the clock (CP) LOW time. Two 16-bit latches hold the RAM A port and B port during the clock (CP) LOW time, eliminating any data races. During clock HIGH, these latches are transparent, reading the data selected by the A and B addresses. The RAM data input field is driven from a four-input multiplexer that selects the ALU output or the D inputs. The ALU output can be shifted up one position, down one position or not shifted. Shifting data operations involves the RAM₁₅ and RAMo I/O pins. For a shift up operation, the RAM shifter MSB is connected to an enabled RAM₁₅ I/O output while the RAM₀ I/O input is selected as the input to the LSB. During a shift down operation, the RAM shifter LSB is connected to an enabled RAMo I/O output, while the RAM₁₅ I/O input is selected as the input to the MSB. **ALU**—The ALU can perform three binary arithmetic and five logic operations on the two 16-bit input words S and R. The S input field is driven from a 3-input multiplexer and the R input field is driven from a 2-input multiplexer, with both having a zero source operand. Both multiplexers are controlled by the $I_{(0, 1, 2)}$ inputs. This multiplexer configuration enables the user to select various pairs of the A, B, D, Q and "0" inputs as source operands to the ALU. Microinstruction inputs $I_{(3, 4, 5)}$ are used to select the ALU function. This high-speed ALU cascades to any word length, providing carry-in (C_n) , carry-out (C_{n+10}) and an open-drain (F=0) output. When all bits of the ALU are zero, the pull-down device of F=0 is off, allowing a wire-OR of this pin over all cascaded devices. Multipurpose pins \overline{G}/F_{15} and P/OVR are aimed at accelerating arithmetic operations. For intermediate and least significant slices, the MSS pin is programmed LOW, selecting the carry-generate (G) and carry-propagate (P) output functions to be used by carry lookahead logic. For the most significant slice, MSS is programmed high, selecting the sign-bit (F15) and the two's complement overflow (OVR) output functions. The sign bit (F₁₅) allows the ALU sign bit to be monitored without enabling the three-state ALU outputs. The overflow (OVR) output is high when the two's complement arithmetic operation has overflowed into the sign bit as logically determined from the Exclusive-OR of the carry-in and carry-out of the most significant bit of the ALU. For all 16-bit applications, the MSS pin on the IDT49C401s is tied high or not connected since only one device is needed. With MSS open or tied high, internal circuitry will direct pins 33 and 34 to function as F₁₅ and OVR, respectively. It is in this 16-bit operating mode that the IDT49C401s function identically to the IMI4X2901B. The ALU data outputs are available at the three-state outputs Y₍₀₋₁₅₎ or as inputs to the RAM register file and Q Register under control of the I(6, 7, 8, 9) instruction inputs. **Q REGISTER**—The Q Register is a separate 16-bit register intended for multiplication and division routines and can also be used as an accumulator or holding register for other types of applications. It is driven from a 4-input multiplexer. In the no-shift mode, the multiplexer enters the ALU F output or Direct Data into the Q Register. In either the shift up or shift down mode, the multiplexer selects the Q Register data appropriately shifted up or down. The Q shifter has two ports, Q_0 and Q_{15} , which operate comparably to the RAM shifter. They are controlled by the $I_{(6,7,8,9)}$ inputs. The clock input of the IDT49C401 controls the RAM, Q Register and A and B data latches. When enabled, the data is clocked into the Q Register on the LOW-to-HIGH transition. When the clock is HIGH, the A and B latches are open and pass data that is present at the RAM outputs. When the clock is LOW, the latches are closed and retain the last data entered. When the clock is LOW and I_(6, 7, 8, 9) define the RAM as the destination, new data will be written into the RAM file defined by the B address field. #### ALU SOURCE OPERAND CONTROL | | | MIC | ROCOD | E | ALU SOURCE
OPERANDS | | | |----------|----------------|----------------|----------------|---------------|------------------------|----|--| | MNEMONIC | l ₂ | I ₁ | I _o | OCTAL
CODE | R | S | | | AQ | L | L | L | 0 | Α | a | | | AB | L | L | н | 1 | Α | В | | | zo | L | н | L | 2 | 0 | Q | | | ZB | L | н | н | 3 | 0 | В | | | ZA | н | L | L | 4 | 0 | Α | | | DA | н | L | н | 5 | D | Α | | | DQ | н | н | L | 6 | D | O. | | | DZ | н | н | н | 7 | D | o | | #### **ALU FUNCTION CONTROL** | | | МІС | CROC | ODE | ALU | | |----------|----------------|-----|----------------|---------------|------------|--------| | MNEMONIC | l ₅ | 14 | l ₃ | OCTAL
CODE | FUNCTION | SYMBOL | | ADD | L | L | L | 0 | R Plus S | R+S | | SUBR | L | L | н | 1 | S Minus R | S - R | | SUBS | L | Н | L | 2 | R Minus S | R - S | | OR | L | Н | н | 3 | R OR S | RVS | | AND | н | L | L | 4 | R AND S | RAS | | NOTES | н | L | н | 5 | RANDS | Ř۸S | | EXOR | н | н | L | 6 | R EX-OR S | R∕VS | | EXNOR | н | Н | н | 7 | R EX-NOR S | R∕₹S | #### ALU ARITHMETIC MODE FUNCTIONS | OCT | TAL | C _n = | - L | C _n | = H | |--------------------------------------|--------------------------------------|-------------------------|---|-------------------------|--| | 15, 4, 3, | | GROUP | FUNCTION | GROUP | FUNCTION | | 0 0 0 | 0
1
5
6 | ADD | A + Q
A + B
D + A
D + Q | ADD
plus one | A + Q + 1
A + B + 1
D + A + 1
D + Q + 1 | | 0
0
0 | 2
3
4
7 | PASS | G B ∢ D | Increment | Q + 1
B + 1
A + 1
D + 1 | | 1
1
1
2 | 2
3
4
7 | Decrement | Q - 1
B - 1
A - 1
D - 1 | PASS | Q B A D | | 2
2
2
1 | 2
3
4
7 | 1's Comp. | -Q - 1
-B - 1
-A - 1
-D - 1 | 2's Comp.
(Negate) | Q B 4 D | | 1
1
1
1
2
2
2
2 | 0
1
5
6
0
1
5
6 | Subtract
(1's Comp.) | Q - A - 1
B - A - 1
A - D - 1
Q - D - 1
A - B - 1
D - A - 1
D - Q - 1 | Subtract
(2's Comp.) | Q - A
B - D
Q - D
A - B
D - O | ## ALU LOGIC MODE FUNCTIONS | ALU LUG | LO LOGIC MODE PONCTIONS | | | | | | | | | | |-------------------------------|----------------------------|--------|----------------------------------|--|--|--|--|--|--|--| | OCT/
I _{5, 4, 3,} | AL
I _{2, 1, 0} | GROUP | FUNCTION | | | | | | | | | 4
4
4
4 | 0
1
5
6 | AND | A A Q
A A B
D A A
D A Q | | | | | | | | | 3
3
3
3 | 0
1
5
6 | OR | AVQ
AVB
DVA
DVQ | | | | | | | | | 6
6
6 | 0
1
5
6 | EX-OR | A ጥ Q
A ጥ B
D ጥ A
D ጥ Q | | | | | | | | | 7
7
7
7 | 0
1
5
6 | EX-NOR | A | | | | | | | | | 7
7
7
7 | 2
3
4
7 | INVERT | QIBIA D | | | | | | | | | 6
6
6 | 2
3
4
7 | PASS | G B A D | | | | | | | | | 3
3
3
3 | 2
3
4
7 | PASS | G B A D | | | | | | | | | 4
4
4
4 | 2
3
4
7 | "ZERO" | 0
0
0 | | | | | | | | | 5
5
5
5 | 0
1
5
6 | MASK | Ā A B
Ā A A
Ā A Q | | | | | | | | ## SOURCE OPERAND AND ALU FUNCTION MATRIX (1) | | | | | | l _{2, 1, 0} | OCTAL | | | | |-------------------------------|---------------------------------|-----------|-----------|--------|----------------------|--------|-----------|-----------|--------| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | OCTAL
1 _{5, 4, 3} | ALU
FUNCTION | | | | ALU SOUR | CE | | | | | | | A, Q | A, B | 0, Q | 0, B | 0, A | D, A | D, Q | D, 0 | | | C _n = L | A + Q | A + B | a | В | Α | D + A | D + Q | D | | 0 | R Plus S
C _n = H | A + Q + 1 | A + B + 1 | Q + 1 | B + 1 | A + 1 | D + A + 1 | D + Q + 1 | D + 1 | | | C _n = L | Q-A-1 | B - A - 1 | Q - 1 | B - 1 | A - 1 | A - D - 1 | Q - D - 1 | -D - 1 | | 1 | S Minus R
C _n = H | Q-A | B - A | Q | В | Α | A-D | Q - D | -D | | | Cn = L | A - Q - 1 | A - B - 1 | -Q - 1 | -B - 1 | -A - 1 | D - A - 1 | D - Q - 1 | D - 1 | | 2 | R Minus S
C _n = H | A - Q | A - B | -Q | -B | -A | D-A | D - Q | D | | 3 | RORS | AVQ | AVB | Q | В | Α | DVA | DVQ | D | | 4 | R AND S | AAQ | AΛB | 0 | 0 | 0 | DAA | DAQ | 0 | | 5 | RANDS | ĀAQ | Ã٨B | Q | В | Α | DΛΑ | ĎΛQ | 0 | | 6 | R EX-OR S | ATO | A∕D`B | Q | В | A | D∕₽A | D∕PQ | D | | 7 | R EX-NOR S | ĀVQ | ĀŶB | ō | B | Ā | D∕VÃ | D∕PQ | D | NOTE: 1. += Plus; -= Minus; Λ = AND; \mathcal{T} = EX-OR; V = OR ## ALU DESTINATION CONTROL | | | м | IICRO | COD | E | RA
FUNC | M | | SISTER
CTION | Y | R.
SHI | AM
FTER | SHIF | TER | | |----------|----|----|----------------|----------------|-----|------------|--------|-------|-----------------|--------|------------------|-------------------|-----------------|------------------|------------------------| | MNEMONIC | i, | i. | i ₇ | i ₆ | HEX | SHIFT | LOAD | SHIFT | LOAD | OUTPUT | RAM _o | RAM ₁₅ | ď | Q ₁₅ | | | OREG | Н | L | L | L | 8 | × | NONE | NONE | F→Q | F | х | х | Х | х | | | NOP | Н | L | L | н | 9 | х | NONE | × | NONE | F | х | х | × | X | | | RAMA | н | L | Н | L | Α | NONE | F→B | х | NONE | Α | х | X | Х | х | | | RAMF | н | L | Н | Н | В | NONE | F→B | Х | NONE | F | х | х | Х | х | Existing 2901 | | RAMQD | Н | н | L | L | С | DOWN | F/2→B | DOWN | Q/2→Q | F | Fo | IN ₁₅ | Q ₀ | IN ₁₅ | Functions | | RAMD | н | н | L | Н | D | DOWN | F/2-→B | х | NONE | F | Fo | IN ₁₅ | O _O | × | | | RAMQU | н | Н | Н | L | Е | UP | 2F→B | UP | 2Q-+Q | F | IN ₀ | F ₁₅ | INo | Q ₁₅ | | | RAMU | Н | Н | Н | Н | F | UP | 2F-→B | × | NONE | F | IN ₀ | F ₁₅ | Х | Q ₁₅ | | | DFF | L | L | L | L | 0 | NONE | D→B | NONE | F→Q | F | × | × | Х | х | | | DFA | L | L | L | Н | 1 | NONE | D→B | NONE | F→Q | Α | × | х | Х | х | | | FDF | L | L | Н | L | 2 | NONE | F→B | NONE | D→Q | F | х | х | Х | х | | | FDA | ī | L | Н | Н | 3 | NONE | F→B | NONE | D→Q | Α | × | × | х | х | New Added | | XQDF | L | Н | L | L | 4 | х | NONE | DOWN | 0/2-→0 | F | Х | х | ao | IN ₁₅ | IDT49C401
Functions | | DXF | L | н | L | Н | 5 | NONE | D→B | х | NONE | F | Х | х | Q ₀ | х | | | XQUF | L | н | Н | L | 6 | х | NONE | UP | 20,→0 | F | х | х | IN _o | Q ₁₅ | | | XDF | L | н | н | н | 7 | х | NONE | NONE | D→Q | F | х | X | Х | Q ₁₅ | | #### NOTE: ^{1.} X = Don't Care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state. B = Register Addressed by B inputs UP is toward MSB; DOWN is toward LSB #### ARSOLUTE MAXIMUM RATINGS (1) | ADOOL | OIE MAXIMON | 117111100 | | | |-------------------|--|--------------|--------------|-------| | SYMBOL | RATING | COMMERCIAL | MILITARY | UNIT | | V _{TERM} | Terminal Voltage
with Respect to
GND | -0.5 to +7.0 | -0.5 to +7.0 | v
 | | TA | Operating
Temperature | 0 to +70 | -55 to +125 | · °C | | T _{BIAS} | Temperature
Under Bias | -55 to +125 | -65 to +135 | °C | | T _{STG} | Storage
Temperature | -55 to + 125 | -65 to +150 | °C | | PT | Power Dissipation | 1.0 | 1.0 | W | | lout | DC Output Current | 50 | 50 | mA | #### NOTE: Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. #### CAPACITANCE ($T_A = +25^{\circ}C$, f = 1.0MHz) | SYMBOL | PARAMETER(1) | CONDITIONS | TYP. | UNIT | |------------------|--------------------|-----------------------|------|------| | C _{IN} | Input Capacitance | V _{IN} = 0V | 5 | pF | | C _{OUT} | Output Capacitance | V _{OUT} = 0V | 7 | рF | #### NOTE: 1. This parameter is sampled and not 100% tested. ## DC ELECTRICAL CHARACTERISTICS $T_A = 0$ °C to +70°C $V_{CC} = 5.0V \pm 5\%$ (Commercial) $V_{CC} = 5.0V \pm 10\%$ (Military) $T_A = -55$ °C to +125°C $V_{LC} = 0.2V$ | _{IC} = V _{CC} -0.
SYMBOL | PARAMETER | TES | T CONDITIONS (1) | MIN. | TYP.(2) | MAX. | וואט | |---|-----------------------------------|--|--------------------------------|-----------------|-----------------|-----------------|------| | ViH | Input HIGH Level | Gue ogle ligh | Gua ogle ligh Level (4) | | _ | _ | V | | V _{IL} | Input LOW Level | Gu nteed gic Low | | | | 0.8 | V | | I _{IH} | Input HIGH Current | | | | 0.1 | 5 | μA | | | Input LOW Current | V _{CC} = Max., V _{IN} = GN | D | - | -0.1 | -5 | μ/ | | TL | - | | I _{OH} = -300µA | V _{HC} | V _{CC} | _ | | | V _{OH} | Output HIGH Voltage | Min. | I _{OH} = -12mA MIL. | 2.4 | 4.3 | | l v | | *OH | | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | I _{OH} = -15mA COM'L. | 2.4 | 4.3 | | | | | | | I _{OL} = 300µA | _ | GND | V _{LC} | .5 V | | V | Output LOW Voltage | V _{CC} = Min. | loL = 20mA MIL. | - | 0.3 | 0.5 | | | V _{OL} | | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | I _{OL} = 24mA COM'L. | _ | 0.3 | 0.5 | | | | Off State (High dar | | V ₀ = 0V | _ | -0.1 | -10 | _ ـ | | loz | Off State (High
Output Current | V _{CC} = Max. | Vo = Vcc (Max.) | _ | 0.1 | 10 | , , | | los | Output Short sircuit Current | V _{CC} = Min., V _{OUT} = 0 | N (3) | -15 | -30 | | m | #### NOTES: - For conditions shown as max. or min. use appropriate value specified under Electrical Characteristics. - 2. Typical values are at $V_{CC} = 5.0V$, $+25^{\circ}C$ ambient and maximum loading. - 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second. - Not more static one department and should only be static tested in a noise-free environment. #### DC ELECTRICAL CHARACTERISTICS (Cont'd.) $T_A = 0$ °C to +70°C $V_{CC} = 5.0V \pm 5\%$ (Commercial) $T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$ $V_{CC} = 5.0V \pm 10\%$ (Military) $V_{LC} = 0.2V$ $V_{HC} = V_{CC} - 0.2V$ | SYMBOL | PARAMETER | TEST CONDITIONS (1) | | MIN. | TYP. ⁽²⁾ | MAX. | UNIT | |--------|---|---|--------|------|---------------------|------|--------------| | | Quiescent Power Supply Current | V _{CC} = Max. | MIL. | | 150 | 245 | mA | | Іссан | CP = H | $V_{HC} \leq V_{IN}$, $V_{IN} \leq V_{LC}$
$f_{CP} = 0$, $CP = H$ | COM'L. | | 150 | 195 | | | | Quiescent Power Supply Current | V _{CC} = Max. | MIL. | | 80 | 125 | mA | | CCQL | CP = L | $V_{HC} \leq V_{IN}, V_{IN} \leq V_{LC}$
$f_{CP} = 0, CP = L$ | COM'L. | | 80 | 98 | IIIA | | ГССТ | Quiescent Input Power Supply ⁽⁵⁾
Current (per Input @ TTL High) | $V_{CC} = Max. V_{IN} = 3.4V, f_{CP} = 0$ | | - | 0.3 | 0.5 | mA/
Input | | | | V _{CC} = Max. | MIL. | - | 2.0 | 3.0 | mA/
MHz | | ICCD | Dynamic Power Supply Current | $V_{HC} \leq V_{IN}, V_{IN} \leq V_{LC}$
Outputs Open, $\overline{OE} = L$ | COM'L. | _ | 2.0 | 2.5 | | | | | V _{CC} = Max., f _{CP} = 10MHz
Outputs Open, OE = L | MIL. | _ | 135 | 210 | | | | | $\begin{array}{c} \text{CP} = 50\% \text{ Duty cycle} \\ \text{V}_{\text{HC}} \leq \text{V}_{\text{IN}} \;, \; \text{V}_{\text{IN}} \; \leq \text{V}_{\text{LC}} \end{array}$ | COM'L. | - | 135 | 170 | mA | | lcc | Total Power Supply Current ⁽⁶⁾ | V _{CC} = Max., f _{CP} = 10MHz
Outputs Open, OE = L | MIL. | _ | 145 | 225 | | | | | CP = 50% Duty cycle
V _{IH} = 3.4V, V _{IL} = 0.4V | COM'L. | _ | 145 | 180 | | #### NOTES: 5. Log is derived by measuring the total current with all the inputs tied together at 3.4V, subtracting out Iccon, then dividing by the total number of inputs. Total Supply Current is the sum of the Quiescent current and the Dynamic current (at either CMOS or TTL input levels). For all conditions, the Total Supply Current can be calculated by using the following equation: $$I_{CC} = I_{CCOH}(CD_H) + I_{CCOL}(1 - CD_H) + I_{CCT}(N_T \times D_H) + I_{CCD}(f_{CP})$$ CDH = Clock duty cycle high period DH = Data duty cycle TTL high period (VIN = 3.4V) N_T = Number of dynamic inputs driven at TTL levels f_{CP} = Clock Input frequency #### CMOS TESTING CONSIDERATIONS Special test board considerations must be taken into account when applying high-speed CMOS products to the automatic test environment. Large output currents are being switched in very short periods and proper testing demands that test set-ups have minimized inductance and guaranteed zero voltage grounds. The techniques listed below will assist the user in obtaining accurate testing results: - All input pins should be connected to a voltage potential during testing. If left floating, the device may oscillate, causing improper device operation and possible latchup. - 2) Placement and value of decoupling capacitors is critical. Each physical set-up has different electrical characteristics and it is recommended that various decoupling capacitor sizes be experimented with. Capacitors should be positioned using the minimum lead lengths. They should also be distributed to decouple power supply lines and be placed as close as possible to the DUT power pins. - 3) Device grounding is extremely critical for proper device testing. The use of multi-layer performance boards with radial decoupling between power and ground planes is necessary. The ground plane must be sustained from the performance board to the DUT interface board and wiring unused interconnect pins to the ground plane is recommended. Heavy gauge stranded wire should be used for power wiring, with twisted pairs being recommended for minimized inductance. - 4) To guarantee data sheet compliance, the input thresholds should be tested per input pin in a static environment. To allow for testing and hardware-induced noise, IDT recommends using V_{IL} ≤ 0V and V_{IH} ≥ 3V for AC tests. # IDT49C401A AC ELECTRICAL CHARACTERISTICS (Military and Commercial Temperature Ranges) The tables below specify the guaranteed performance of the The tables below specify the guaranteed performance of the IDT49C401A over the -55°C to +125°C and 0°C to +70°C temperature ranges. All times are in nanoseconds and are measured at the 1.5V signal level. The inputs switch between 0V and 3V with signal transition rates of 1V per nanosecond. All outputs have maximum DC current loads. #### CYCLE TIME AND CLOCK CHARACTERISTICS | | MIL. | COM'L. | UNIT | |--|------|--------|------| | Read-Modify-Write Cycle (from
selection of A, B registers to end
of cycle) | 28 | 24 | ns | | Maximum Clock Frequency to shift Q (50% duty cycle, I = C32 or E32) | 35 | 41 | MHz | | Minimum Clock LOW Time | 13 | 11 | ns | | Minimum Clock HIGH Time | 13 | 11 | ns | | Minimum Clock Period | 36 | 31 | ns | ## COMBINATIONAL PROPAGATION DELAYS (1) CL = 50pF | | | то оитрит | | | | | | | | | | | | | | | | |--|------|-----------|-------------------|--------|-----------|--------|------|--------|------|--------|------|--------|------|---------------------------------------|------|-----------------------------------|----| | FROM INPUT | Y | | (MSS = L)
G, P | | (MSS = H) | | • | | | Cn+16 | | F = 0 | | RAM ₀
RAM ₁₅ | | Q ₀
Q ₁₅ | | | | MIL. | COM'L. | | A, B Address | 41 | 37 | 39 | 35 | 41 | 37 | 41 | 37 | 37 | 34 | 41 | 37 | 40 | 36 | | - | ns | | D | 32 | 29 | 29 | 26 | 29 | 26 | 31 | 28 | 27 | 25 | 32 | 29 | 28 | 26 | | | ns | | Cn | 29 | 25 | - | - | 26 | 24 | 25 | 23 | 20 | 18 | 29 | 26 | 23 | 21 | | | ns | | lo, 1, 2 | 35 | 32 | 30 | 27 | 35 | 32 | 34 | 31 | 29 | 26 | 35 | 32 | 30 | 27 | | _ | ns | | 13, 4, 5 | 35 | 32 | 28 | 26 | 34 | 31 | 34 | 31 | 27 | 25 | 35 | 32 | 28 | 26 | _ | | ns | | 6, 7, 8, 9 | 25 | 23 | _ | | _ | _ | _ | | _ | | _ | | 20 | 18 | 20 | 18 | ns | | A Bypass
ALU (I = AXX,
1XX, 3XX) | 30 | 27 | _ | _ | - | _ | - | _ | _ | _ | _ | | _ | _ | - | _ | ns | | Clock - | 34 | 31 | 31 | 28 | 33 | 30 | 34 | 31 | 30 | 27 | 34 | 31 | 34 | 31 | 25 | 23 | ns | ## SET-UP AND HOLD TIMES RELATIVE TO CLOCK (CP INPUT) #### NOTES: - A dash indicates a propagation delay or set-up time constraint does not exist. - 2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. - Source addresses must be stable prior to the H → L transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e., if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time. - 4. The set-up time prior to the clock L → H transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock L → H transition, regardless of when the H → L transition occurs. - 5. First value is direct path (DATA_{IN} \rightarrow RAM/Q Register). Second value is indirect path (DATA_{IN} \rightarrow ALU \rightarrow RAM/Q Register). ## IDT49C401 AC ELECTRICAL CHARACTERISTICS (Military and Commercial Temperature Ranges) The tables below specify the guaranteed performance of the IDT49C401 over the -55°C to +125°C and 0°C to +70°C temperature ranges. All times are in nanoseconds and are measured at the 1.5V signal level. The inputs switch between 0V and 3V with signal transition rates of 1V per nanosecond. All outputs have maximum DC current loads. #### CYCLE TIME AND CLOCK CHARACTERISTICS | | MIL. | COM'L. | UNIT | |--|------|--------|------| | Read-Modify-Write Cycle (from
selection of A, B registers to end
of cycle) | 50 | 48 | ns | | Maximum Clock Frequency to shift Q (50% duty cycle, I = C32 or E32) | 20 | 21 | MHz | | Minimum Clock LOW Time | 30 | 30 | ns | | Minimum Clock HIGH Time | 20 | 20 | ns | | Minimum Clock Period | 50 | 48 | ns | ## COMBINATIONAL PROPAGATION DELAYS (1) CL = 50pF | | ТО ОИТРИТ | | | | | | | | | | | | | | | | | |--|-----------|--------|-------------------|--------|------------------------------|--------|------|-------------|------|--------|-------|--------|---------------------------------------|--------|-----------------------------------|--------|------| | FROM INPUT | Y | | (MSS = L)
G, P | | (MSS = H)
F ₁₅ | | | H)
OVR C | | n+16 | F = 0 | | RAM ₀
RAM ₁₅ | | Q ₀
Q ₁₅ | | UNIT | | | MIL. | COM'L. | | A. B Address | 52 | 47 | 47 | 42 | 52 | 47 | 47 | 42 | 38 | 34 | 52 | 47 | 44 | 40 | | | ns | | D | 35 | 32 | 34 | 31 | 35 | 32 | 34 | 31 | 27 | 25 | 35 | 32 | 28 | 26 | | _ | ns | | Cn | 29 | 26 | _ | _ | 29 | 26 | 27 | 25 | 20 | 18 | 29 | 26 | 23 | 21 | | | ns | | lo, 1, 2 | 41 | 37 | 30 | 27 | 41 | 37 | 38 | 35 | 29 | 26 | 41 | 37 | 30 | 27 | - | _ | ns | | 13, 4, 5 | 40 | 36 | 28 | 26 | 40 | 36 | 37 | 34 | 27 | 25 | 40 | 36 | 28 | 26 | | | ns | | 16, 7, 8, 9 | 26 | 24 | _ | _ | _ | | _ | _ | _ | | _ | | 20 | 18 | 20 | 18 | ns | | A Bypass
ALU (I = AXX,
1XX, 3XX) | 30 | 27 | _ | _ | - | _ | _ | - | _ | _ | _ | _ | - | - | _ | - | ns | | Clock - | 42 | 38 | 41 | 37 | 42 | 38 | 41 | 37 | 30 | 27 | 42 | 38 | 41 | 37 | 25 | 23 | ns | ## SET-UP AND HOLD TIMES RELATIVE TO CLOCK (CP INPUT) #### NOTES: - 1. A dash indicates a propagation delay or set-up time constraint does not exist. - 2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. - Source addresses must be stable prior to the H → L transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e., if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time. - The set-up time prior to the clock L → H transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock L → H transition, regardless of when the H → L transition occurs. - 5. First value is direct path (DATA_{IN} → RAM/Q Register). Second value is indirect path (DATA_{IN} → ALU → RAM/Q Register). #### IDT49C401A OUTPUT ENABLE/DISABLE TIMES (C_L = 5pF, measured to 0.5V change of V_{OUT} in nanoseconds) | ſ | | | ΕN | IABLE | DISABLE | | | | |---|-------|--------|------|--------|---------|--------|--|--| | | INPUT | OUTPUT | MIL. | COM'L. | MIL. | COM'L. | | | | I | ŌĒ | Υ | 25 | 23 | 25 | 23 | | | #### **AC TEST CONDITIONS** | Input Pulse Levels | GND to 3.0V | |-------------------------------|--------------| | Input Rise/Fall Times | 1V/ns | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | Output Load | See Figure 1 | #### IDT49C401 #### **OUTPUT ENABLE/DISABLE TIMES** (C_L = 5pF, measured to 0.5V change of V_{OUT} in nanoseconds) | | | EN | IABLE | DISABLE | | | | | |-------|--------|------|--------|---------|--------|--|--|--| | INPUT | OUTPUT | MIL. | COM'L. | MIL. | COM'L. | | | | | ŌĒ | Υ | 22 | 20 | 20 | 18 | | | | #### **TEST LOAD CIRCUIT** #### INPUT/OUTPUT INTERFACE CIRCUIT Figure 2. Input Structure (Ail Inputs) Figure 3. Output Structure (All Outputs Except F = 0) Figure 4. Output Structure #### ORDERING INFORMATION