Integrated Device Technology, Inc. ## CMOS PARALLEL-TO-SERIAL FIFO 2048 x 9-BIT & 4096 x 9-BIT IDT72131 IDT72141 T-46-35 #### **FEATURES:** - · 35ns parallel port access time, 45ns cycle time - 50MHz serial port shift rate - Expandable in depth and width with no external components - Programmable word lengths including 7-9, 16-18, 32-36 bit using Flexishift™ serial output without using any additional components - Multiple status flags: Full, Almost-Full (1/8 from full), Half-Full, Almost Empty (1/8 from empty), and Empty - Asynchronous and simultaneous read and write operations - · Dual-port zero fall-through architecture - · Retransmit capability in single device mode - Produced with high-performance, low power CEMOS™ technology - Available in 28-pin ceramic, plastic DIP and 32-pin plastic leaded chip corner (PLCC) - Military product compliant to MIL-STD-883, Class B #### **DESCRIPTION:** The IDT72131/72141 are high-speed, low power parallel-to-serial FIFOs. These FIFOs are ideally suited to serial communications applications, tape/disk controllers, and local area networks (LANs). The IDT72131/72141 can be configured with the IDTs serial-to-parallel FIFOs (IDT72132/72142) for bidirectional serial data buffering. The FIFO has a 9-bit parallel input port and a serial output port. Wider and deeper parallel-to-serial data buffers can be built using multiple IDT72131/72141 chips. IDTs unique Flexishift serial expansion logic (SOX, NR) makes width expansion possible with no additional components. These FIFOs will expand to a variety of word widths including 8, 9, 16, and 32 bits. The IDT72131/141 can also be directly connected for depth expansion. Five flags are provided to monitor the FIFO. The full and empty flags prevent any FIFO data overflow or underflow conditions. The almost-full (7/8), half-full, and almost empty (1/8) flags signal memory utilization within the FIFO. The IDT72131/72141 is fabricated using IDTs high-speed submicron CEMOS technology. Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B. #### **FUNCTIONAL BLOCK DIAGRAM** CEMOS and Flexishift are trademarks of Integrated Device Technology, Inc. **MILITARY AND COMMERCIAL TEMPERATURE RANGES** **APRIL 1992** O1992 integrated Device Technology, Inc. 5.7 DSC-2029 MILITARY AND COMMERCIAL TEMPERATURE RANGES ### PIN DESCRIPTIONS T-46-35 | PIN DES | CRIPTIONS | | 1-46-35 | |-------------------------|-----------------------------------|-----|--| | Symbol | Name | VO. | Description | | Do-Da | Inputs | l | Data inputs for 9-bit wide data. | | RS | Reset | - | When RS is set low, internal READ and WRITE pointers are set to the first location of the RAM array. HF and FF go high, and AEF and EF go low. A reset is required before an initial WRITE after power-up. W must be high and SOCP must be low during RS cycle. | | ₩ | Write | Ł | A write cycle is initiated on the falling edge of WRITE if the Full Flag (FF) is not set. Data set-
up and hold times must be adhered to with respect to the rising edge of WRITE. Data is stored
in the RAM array sequentially and independently of any ongoing read operation. | | SOCP | Serial Output
Clock | 1 | A serial bit read cycle is initiated on the rising edge of SOCP if the Empty Flag (EF) is not set. In both Depth and Serial Word Width Expansion modes, all of the SOCP pins are tied together. | | NR | Next Read | - | To program the Serial Out data word width , connect $\overline{\text{NR}}$ with one of the Data Set pins (Q4, Qe, Q7 and Q8). For example, $\overline{\text{NR}}$ - Q7 programs for a 8-bit Serial Out word width. | | FURT. | First Load/
Retransmit | - | This is a dual purpose input. In the single device configuration (XI grounded), activating retransmit (FL/RT-low) will set the internal READ pointer to the first location. There is no effect on the WRITE pointer. W must be high and SOCP must be low before setting FL/RT low. Retransmit is not compatible with depth expansion. In the depth expansion configuration, FL/RT grounded indicates the first activated device. | | য় | Expansion In | 1 | In the single device configuration, \overline{XI} is grounded. In depth expansion or daisy chain expansion, \overline{XI} is connected to \overline{XO} (expansion out) of the previous device. | | SOX | Serial Output
Expansion | 1 | In the Serial Output Expansion mode, the SOX pin of the least significant device is tied high. The SOX pin of all other devices is connected to the Qs pin of the previous device. Data is then clocked out least significant bit first. For single device operation, SOX is tied high. | | SO | Serial Output | 0 | Serial data is output on the Serial Output (SO) pin. Data is clocked out Least Significant Bit first.
In the Serial Width Expansion mode the SO pins are tied together and each SO pin is tristated
at the end of the byte. | | FF | Full Flag | 0 | When FF goes low, the device is full and further WRITE operations are inhibited. When FF is high, the device is not full. | | ĒĒ | Empty Flag | 0 | When EF goes low, the device is empty and further READ operations are inhibited. When EF is high, the device is not empty. See the description on page 6 for more details. | | AEF | Almost-Empty/
Almost-Full Flag | 0 | When AEF is low, the device is empty to 1/8 full or 7/8 to completely full. When AEF is high, the device is greater than 1/8 full, but less than 7/8 full. | | XO/HF | Expansion Out/
Half-Full Flag | O | This is a dual-purpose output. In the single device configuration (XI grounded), the device is more than half full when HF is low. In the depth expansion configuration (XO connected to XI of the next device), a pulse is sent from XO to XI when the last location in the RAM array is filled. | | Q4, Q6,
Q7 and
Q8 | Data Set | 0 | The appropriate Data Set pin (Q4, Q6, Q7 and Q8) is connected to NR to program the Serial Out data word width. For example: Q6 - NR programs a 7-bit word width, Q6 - NR programs a 9-bit word width, Q6 - NR programs a 9-bit word width, etc. | | Vcc | Power Supply | | Single Power Supply of 5V. | | GND | Ground | | Single ground at 0V. | | | | | | 2751 tbl 01 #### STATUS FLAGS | Number of W | ords in FIFO | | | | | |-------------------|--------------|----|-----|----|----| | IDT72131 IDT72141 | | FF | ĀĒF | HF | EF | | 0 | 0 | Н | L | Н | L | | 1-255 | 1-511 | Н | L | Н | Н | | 256-1024 | 512-2048 | Н | Н | Н | Н | | 1025-1792 | 2049-3584 | Н | Н | L | Н | | 1793-2047 | 3585-4095 | Н | L | L | H | | 2048 | 4096 | L | L | L | Н | 2751 tbl 02 MILITARY AND COMMERCIAL TEMPERATURE RANGES ## **PIN CONFIGURATIONS** T-46-35 MILITARY AND COMMERCIAL TEMPERATURE RANGES IDT72131, IDT72141 CMOS PARALLEL-TO-SERIAL FIFO 2048 x 9-BIT & 4096 x 9-BIT ABSOLUTE MAXIMUM RATINGS(1) | Symbol | Rating | Commercial | Military | Unit | |--------|--|--------------|--------------|------| | VTERM | Terminal Voltage
with Respect
to GND | -0.5 to +7.0 | -0.5 to +7.0 | ٧ | | TA | Operating
Temperature | 0 to +70 | -55 to +125 | ô | | TBIAS | Temperature
Under Bias | -55 to +125 | -65 to +135 | ပ္ | | Тѕта | Storage
Temperature | -55 to +125 | -65 to +150 | °C | | lout | DC Output
Current | 50 | 50 | mΑ | NOTE: 2751 tbl 03 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other. conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ## RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------------------|----------------------------------|------|------|------|------------| | Vссм | Military Supply
Voltage | 4.5 | 5.0 | 5.5 | ٧ | | Vco | Commercial Supply
Voltage | 4.5 | 5,0 | 5.5 | ٧ | | GND | Supply Voltage | 0 | 0 | 0 | V | | ViH | Input High Voltage
Commercial | 2.0 | _ | - | ٧ | | ViH | Input High Voltage
Military | 2.2 | _ | _ | ٧ | | VIL ⁽¹⁾ | Input Low Voltage | | | 0.8 | ٧ | | NOTE: | | | | 2 | 751 tbl 04 | 1. 1.5V undershoots are allowed for 10ns once per cycle. T-46-35 | | , ` | | | | |--------|--------------------------|------------|------|------| | Symbol | Parameter ⁽¹⁾ | Conditions | Max. | Unit | | CIN | Input Capacitance | VIN = 0V | 10 | рF | | Cout | Output Capacitance | Vout = 0V | 12 | pF | NOTE: 1. This parameter is sampled and not 100% tested. 2751 tbl 05 ## DC ELECTRICAL CHARACTERISTICS (Commercial: $Vcc = 5.0V \pm 10\%$, $TA = 0^{\circ}C$ to $+70^{\circ}C$; Military: $Vcc = 5.0V \pm 10\%$, $TA = -55^{\circ}C$ to $+125^{\circ}C$) | | | IDT72131/IDT72141
Commercial | | | IDT | | | | |---------------------|---|---------------------------------|----------|------|------|------|------|------| | Symbol | Parameter | Min. | Тур. | Max. | Min. | Тур. | Max. | Unit | | lıL ⁽¹⁾ | Input Leakage Current
(Any Input) | -1 | | 1 | -10 | _ | 10 | μА | | loL ⁽²⁾ | Output Leakage Current | -10 | - | 10 | -10 | | 10 | μΑ | | Vон | Output Logic "1" Voltage, | 2.4 | _ | _ | 2.4 | | _ | ٧ | | Vol | Output Logic "0" Voltage | _ | _ | 0.4 | _ | _ | 0.4 | ٧ | | lco1 ⁽³⁾ | Power Supply Current | | 90 | 140 | | 100 | 160 | mA | | ICC2 ⁽³⁾ | Average Standby Current
(W = RS = FL/RT = VIH)
(SOCP = VIL) | - | 8 | 12 | | 12 | 25 | mA | | ICC3(L)(3,4) | Power Down Current | | | 2 | | | 4 | mA | | Icc3(S)(3,4) | | | - | 8 | - | | 12 | mA | NOTES: - 1. Measurements with 0.4 ≤ Vin ≤ Vcc. 2. SOCP ≤ Vi., 0.4 ≤ Vour ≤ Vcc. 3. Ico measurements are made with outputs open. 4. RS = FI/RT = W = Vcc -0.2V; SOCP ≤ 0.2V; all other inputs ≥ Vcc -0.2V or ≤ 0.2V. 2751 tbl 06 MILITARY AND COMMERCIAL TEMPERATURE RANGES ## **AC ELECTRICAL CHARACTERISTICS** T-46-35 (Commercial: $Vcc = 5.0V \pm 10\%$, TA = 0°C to +70°C; Military: $Vcc = 5.0V \pm 10\%$, TA = -55°C to +125°C) | | • • • | Comn | nercial | Mil | itary | Mil. and | l Com'l. | | |--------|---|--|--|------------------|-------------|-------------|--|--------------| | | | | 131x35
141x35 | IDT721
IDT721 | | | 131x50
141x50 |] . | | Symbol | | | Max. | Min. | Max. | Min. | Max. | Unit | | ts | Parallel Shift Frequency | | 22.2 | | 20 | | 15 | MHz | | tsoop | Serial-Out Shift Frequency | | 50 | | 50 | - | 40 | MHz | | PARALL | EL INPUT TIMINGS | | | | | | | - | | tos | Data Set-up Time | 18 | _ | 20 | | 30 | . — | ns | | ton · | Data Hold Time | 0 | - | 0 | <u> </u> | 5 | · | ns | | two | Write Cycle Time | 45 | _ | 50 | _ | 65 | _ | ns | | twpw | Write Pulse Width | 35 | | 40 | _ | 50 | | ns | | twa | Write Recovery Time | 10 | | 10 | _ | 15 | | ns | | twer | Write High to EF High | | 30 | _ | 35 | | 45 | ns | | twff | Write Low to FF Low | _ | 30 | | 35 | | 45 | ns | | twr | Write Low to Transitioning HF, AEF | | 45 | _ | 50 | | 65 | ns | | twpf | Write Pulse Width After FF High | 35 | | 40 | | 50 | - | ns | | SERIAL | OUTPUT TIMINGS | | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | tsonz | SOCP Rising Edge to SO at High Z ⁽¹⁾ | 5 | 16 | 5 | 16 | 5 | 26 | ns | | tsolz | SOCP Rising Edge to SO at Low Z ⁽¹⁾ | 5 | 22 | 5 | 22 | 5 | 22 | ns | | tsopo | SOCP Rising Edge to Valid Data on SO | | 18 | | 18 | | 18 | ns | | tsox | SOX Set-up Time to SOCP Rising Edge | 5 | _ | 5 | _ | . 5 | | ns | | tsocw | Serial in Clock Width High/Low | 8 | | 8 | | 10 | | ns | | tsocer | SOCP Rising Edge (Bit 0 - Last Word) to EF Low | | 20 | | 25 | | 25 | ns | | tsocff | SOCP Rising Edge to FF High | | 30 | | 35 | | 40 | ns | | tsocr | SOCP Rising Edge to HF, AEF, High | | 30 | | 35 | | 40 | ns | | tREFSO | Recovery Time SOCP After EF High | 35 | | 40 | | 50 | | ns | | RESET | | J | L | L | <u> </u> | . , | <u> </u> | 110 | | tasc | Reset Cycle Time | 45 | | 50 | <u> </u> | 65 | Γ | ns | | tas | Reset Pulse Width | 35 | | 40 | | 50 | <u> </u> | ns | | tass | Reset Set-up Time | 35 | | 40. | <u> </u> | 50 | | ns | | tasa | Reset Recovery Time | 10 | | 10 | | 15 | | ns | | tase1 | Reset to EF and AEF Low | | 45 | | 50 | | 65 | ns | | tRSF2 | Reset to HF and FF High | | 45 | | . 50 | | 65 | ns | | tRSQL | Reset to Q Low | 20 | | 20 | | 35 | | us | | trsoh | Reset to Q High | 20 | | 20 | | 35 | | ns | | | ISMIT TIMINGS | <u> </u> | · | | | | L | 1110 | | tate | Retransmit Cycle Time | 45 | T = : | 50 | | 65 | | ns | | tat | Retransmit Pulse Width | 35 | | . 40 | | 50 | | ns | | tats | Retransmit Set-up Time | 35 | | 40 | | 50 | | ns | | tata | Retransmit Recovery Time | 10 | | 10 | | 15 | - | ns | | | EXPANSION MODE TIMINGS | 1 ,0 | | 1 10 | | | L | 1 115 | | txoL | Read/Write to XO Low | Γ_ | 35 | | 40 | | 50 | | | txon | Read/Write to XO High | | 35 | | 40 | | 50 | ns | | txi | XI Pulse Width | 35 | | 40 | | 50 | - 50 | ns | | txin | XI Recovery Time | 10 | | 10 | | 10 | - | ns | | txis | XI Set-up Time | 15 | | 15 | | 15 | | ns | | IOTE: | West ab time | 10 | | 10 | | 10 | | ns | NOTE: 1. Guaranteed by design minimum times, not tested. MILITARY AND COMMERCIAL TEMPERATURE RANGES ## **AC ELECTRICAL CHARACTERISTICS (Continued)** T-46-35 (Commercial: $Vcc = 5.0V \pm 10\%$, TA = 0°C to +70°C; Military: $Vcc = 5.0V \pm 10\%$, TA = -55°C to +125°C) | | | | Military and Commercial | | | | | | | |---------------|---|--|--|--|----------------|------------------|--|---------|--| | | | | 131x65
141x65 | IDT721
IDT721 | | IDT721
IDT721 | 31x120
41x120 | | | | Symbol | Parameter | Min. | | Min. | Max. | Min. | Max. | Uni | | | ts | Parallel Shift Frequency | | 12.5 | | 10 | | 7 | MH: | | | tsocp | Serial-Out Shift Frequency | | 33 | <u> </u> | 28 | | 25 | MH: | | | PARALL | EL INPUT TIMINGS | | | | | | | | | | tos | Data Set-up Time | 30 | | 40 | | 40 | | ns | | | ton | Data Hold Time | 10 | | 10 | | 10 | - | ns | | | twc | Write Cycle Time | 80 | - | 100 | | 140 | | ns | | | twpw | Write Pulse Width | 65 | _ | 80 | | 120 | | ns | | | twa | Write Recovery Time | 15 | - | 20 | | 20 | | ns | | | twer | Write High to EF High | | 60 | _ | 60 | | 60 | ns | | | twff | Write Low to FF Low | T | 60 | - | 60 | _ | 60 | ns | | | twr | Write Low to Transitioning HF, AEF | | 80 | | 100 | | 140 | ns | | | twpf | Write Pulse Width After FF High | 65 | | 80 | _ | 120 | _ | ns | | | SERIAL | OUTPUT TIMINGS | | | | | | | | | | tsonz | SOCP Rising Edge to SO at High Z ⁽¹⁾ | 5 | 20 | 5 | 25 | 5 | 35 | ns | | | tsolz | SOCP Rising Edge to SO at Low Z ⁽¹⁾ | 5 | 22 | 5 | 30 | 5 | 35 | ns | | | tSOPD | SOCP Rising Edge to Valid Data on SO | 1 - | 22 | | 30 | | 35 | ns | | | tsox | SOX Set-up Time to SOCP Rising Edge | 5 | | 5 | _ | 5 | | ns | | | tsocw | Serial In Clock Width High/Low | 10 | | 15 | | 15 | _ | ns | | | tSOCEF | SOCP Rising Edge (Bit 0 - Last Word) to EF Low | 1 | 30 | 1 - | 30 | | 30 | ns | | | tsocre | SOCP Rising Edge to FF High | <u> </u> | 50 | | 60 | | 65 | ns | | | tsocr | SOCP Rising Edge to HF, AEF, High | | 50 | T | 60 | | 65 | ns | | | trefso | Recovery Time SOCP After EF High | 65 | | 80 | _ | 120 | | ns | | | | TIMINGS | | | | | | | | | | trsc | Reset Cycle Time | 80 | T | 100 | | 140 | T | ns | | | tris | Reset Pulse Width | 65 | | 80 | - | 120 | | ns | | | tres | Reset Set-up Time | 65 | | 80 | | 120 | | ns | | | TASR | Reset Recovery Time | 15 | | 20 | - | 20 | | ns | | | tnon
tnsF1 | Reset to EF and AEF Low | | 80 | | 100 | | 140 | ns | | | tRSF2 | Reset to HF and FF High | + | 80 | 1 | 100 | | 140 | ns | | | trsqL | Reset to Q Low | 50 | | 65 | | 105 | | ns | | | THEOH | Reset to Q High | 50 | _ | 65 | | 105 | — | ns | | | | VSMIT TIMINGS | | | 1 | L | 1 100 | | 1110 | | | TRTC | Retransmit Cycle Time | 80 | T | 100 | T | 140 | Γ _ | ns | | | tar | Retransmit Pulse Width | 65 | | 80 | | 120 | | ns | | | tats | Retransmit Set-up Time | 65 | | 80 | | 120 | <u> </u> | ns | | | tata | Retransmit Recovery Time | 15 | | 20 | <u></u> | 20 | <u> </u> | ns | | | | EXPANSION MODE TIMINGS | | | 1 20 | <u> </u> | 1 50 | | 1 113 | | | tXOL | Read/Write to XO Low | Т | 65 | T | 80 | Т—— | 120 | ns | | | | Read/Write to XO Low Read/Write to XO High | | 65 | | 80 | | 120 | ns | | | txon | | 65 | 1 00 | - | 00 | 120 | 140 | + | | | txi | XI Pulse Width XI Recovery Time | 65 | +=- | 80 | | 120 | | ns | | | txir | | 10 | - | 10 | - | 10 | - - | ns | | | txis | XI Set-up Time | 15 | | 15 | | 15 | | 2751 tt | | NOTE: 1. Guaranteed by design minimum times, not tested. #### MILITARY AND COMMERCIAL TEMPERATURE RANGES ## **AC TEST CONDITIONS** | Input Pulse Levels | GND to 3.0V | |-------------------------------|--------------| | Input Rise/Fall Times | 5ns | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | Output Load | See Figure A | 2751 tbl 0 Figure A. Ouput Load *including jlg and scope capacitances #### **FUNCTIONAL DESCRIPTION** #### **Parallel Data Input** The data is written into the FIFO in parallel through the Do-s input data lines. A write cycle is initiated on the falling edge of the Write (\overline{W}) signal provided the Full Flag (\overline{FF}) is not asserted. If the \overline{W} signal changes from HIGH-to-LOW and the Full-Flag (\overline{FF}) is already set, the write line is inhibited internally from incrementing the write pointer and no write operation occurs. Data set-up and hold times must be met with respect to the rising edge of Write. The data is written to the RAM at the write pointer. On the rising edge of W, the write pointer is incremented. Write operations can occur simultaneously or asynchronously with read operations. #### Serial Data Output The serial data is output on the SO pin. The data is clocked out on the rising edge of SOCP providing the Empty Flag (\overline{EF}) is not asserted. If the Empty Flag is asserted then the next data word is inhibited from moving to the output register and being clocked out by SOCP. NOTE: SOCP should not be clocked once the last bit of the last word has been clocked out. If it is, then two things will occur. One, the SO pin will go high-Z and two, SOCP will be out of sync with Next Read (\overline{NR}). The serial word is shifted out Least Significant Bit first, that is the first bit will be D0, then D1 and so on up to the serial word width. The serial word width must be programmed by connecting the appropriate Data Set line (Q4, Q6, Q7 or Q8) to the NR input. The Data Set lines are taps off a digital delay line. Selecting one of these taps, programs the width of the serial word to be read and shifted out. Figure 1. Reset Figure 2. Write Operation Figure 3. Read Operation NOTES: This timing applies to the Active Device in Width Expansion Mode. This timing applies to Single Device Mode at Empty Boundary (EF = low) and the Next Active Device in Width Expansion Mode. Figure 4. Full Flag from Last Write to First Read 2751 drw 07 ## MILITARY AND COMMERCIAL TEMPERATURE RANGES NOTE: 1. SOCP should not be clocked until $\overline{\text{EF}}$ goes high. Figure 5. Empty Flag from Last Read to First Write NOTE: 1. SOCP should not be clocked until EF goes high. Figure 6. Empty Boundary Condition Timing Figure 7. Full Boundry Condition Timing Figure 8. Half Full, Almost Full and Almost Empty Timings NOTE: 1. EF, AEF, HF and FF may change status during Retransmit, but flags will be valid at texto. 2751 dow 12 Figure 9. Retransmit Figure 10. Expansion-Out Figure 11, Expansion-in #### MILITARY AND COMMERCIAL TEMPERATURE RANGES ## OPERATING CONFIGURATIONS Single Device Configuration In the standalone case, the SOX line is tied HIGH and not used. On the first LOW-to-HIGH of the SOCP clock, all of the Data Set lines (Q4, Q6, Q7, Q8) go low and a new serial word is started. The Data Set lines then go high on the equivalent SQCP clock pulse. This continues until the Q line connected to $\overline{\text{NR}}$ goes high completing the serial word. The cycle is then repeated with the next LOW-to-HIGH transition of SQCP. Figure 12. Eight-Bit Word Single Device Configuration # 5 TRUTH TABLES TABLE 1: RESET AND RETRANSMIT - ## SINGLE DEVICE CONFIGURATION/WIDTH EXPANSION MODE | | Inputs | | | Interna | Outputs | | | | |------------|--------|-------|----|--------------------------|--------------------------|---------|----|----| | Mode | RS | FL/RT | ΧĪ | Read Pointer | Write Pointer | AEF, EF | FF | HF | | Reset | 0 | Х | 0 | Location Zero | Location Zero | 0 | 1 | 1 | | Retransmit | 1 | 0 | 0 | Location Zero | Unchanged | Х | X | Х | | Read/Write | 1 | 1 | 0 | Increment ⁽¹⁾ | Increment ⁽¹⁾ | Х | X | Х | NOTE: 1. Pointer will increment if appropriate flag is HIGH. MILITARY AND COMMERCIAL TEMPERATURE RANGES #### Width Expansion Configuration In the cascaded case, word widths of more than 9 bits can be achieved by using more than one device. By tying the SOX line of the least significant device HIGH and the SOX of the subsequent devices to the appropriate Data Set lines of the previous devices, a cascaded serial word is achieved. On the first LOW-to-HIGH clock edge of SOCP, all lines go LOW. Just as in the standalone case, on each corresponding clock cycle, the equivalent Data Set line goes HIGH in order of least to most significant. When the Data Set line which is connected to the SOX input of the next device goes HIGH, the Do of that device goes HIGH, the cascading from one device to the next. The Data Set line of the most significant bit programs the serial word width by being connected to all NR inputs. The Serial Data Output (SO) of each device in the serial word must be tied together. Since the SO pin is three stated, only the device which is currently shifting out is enabled and driving the 1-bit-bus. T-46-35 Figure 13. Width Wxpansion for 16-bit Parallel Data In. The Parallel Data in is tied to Doe of FIFO #1 and Doe of FIFO #2. CMOS PARALLEL-TO-SERIAL FIFO 2048 x 9-BIT & 4098 x 9-BIT #### MILITARY AND COMMERCIAL TEMPERATURE RANGES ## Depth Expansion (Daisy Chain) Mode The IDT72131/41 can be easily adapted to applications where the requirements are for greater than 2048/4096 words. Figure 14 demonstrates Depth Expansion using three IDT72131/41. Any depth can be attained by adding additional IDT72131/41 operates in the Depth Expansion configuration when the following conditions are met: 1. The first device must be designated by grounding the First Load (FL) control input. - 2. All other devices must have FL in the high state. - The Expansion Out (XO) pin of each device must be - tied to the Expansion In (XI) pin of the next device. External logic is needed to generate a composite Full Flag (FF) and Empty Flag (EF). This requires the OR-ing of all EFs and OR-ing of all FFs (i.e., all must be set to generate the correct composite FF or EF). - The Retransmit (RT) function and Half-Full Flag (HF) are not available in the Depth Expansion mode. Figure 14. A 12K x 8 Parallel-in Serial-Out FiFO ## TABLE 2: RESET AND FIRST LOAD TRUTH TABLE -**DEPTH EXPANSION/COMPOUND EXPANSION MODE** | | Inputs | | | Interna | al Status | Outputs | | | |----------------------------|--------|----|-----|---------------|---------------|---------|----|--| | Mode | RS | FL | XI | Read Pointer | Write Pointer | EF | FF | | | Reset-First
Device | 0 | 0 | (1) | Location Zero | Location Zero | 0 | 1 | | | Reset-All
Other Devices | 0 | 1 | (1) | Location Zero | Location Zero | 0 | 1 | | | Read/Write | 1 | Х | (1) | X | Х | Х | X | | 1. XI is connected to XO of previous device. 2. RS = Reset Input, FURT = First Load/Retransmit, EF = Empty Flag Ouput, FF = Full Flag Output, XI = Expansion Input.