

8K X 9 & 16K X 9 CEMOS™ PARALLEL IN-OUT FIFO MODULE

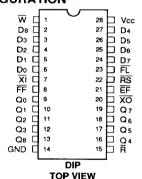
IDT7M205S IDT7M206S

FEATURES:

- · First-In/First-Out memory module
- 8K x 9 organization (IDT7M205S)
- 16K x 9 organization (IDT7M206S)
- · High speed: 20ns (max.) access time
- · Asynchronous and simultaneous read and write
- Fully expandable by both word depth and/or bit width
- MASTER/SLAVE multiprocessing applications
- · Bidirectional and rate buffer applications
- Empty and Full warning-flags
- High-performance CEMOS technology
- Single 5V (±10%) power supply

DESCRIPTION:

IDT7M205S/206S are FIFO memory modules constructed on a multi-layered ceramic substrate using four IDT7203 (2K x 9) or four IDT7204 (4K x 9) FIFOs in leadless chip carriers. Extremely high speeds are achieved in this fashion due to the use of IDT7203s and IDT7204s fabricated in IDT's high performance CEMOS technology. These devices utilize an

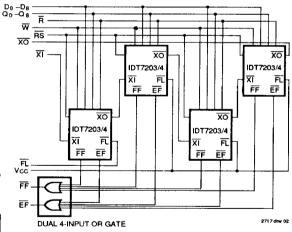

algorithm that loads and empties data on a first-In/first-out basis. The device uses Full and Empty flags to prevent data overflow and underflow and expansion logic to allow for unlimited expansion capability in both word size and depth.

The reads and writes are internally sequential through the use of ring pointers, with no address information required to load and unload data. Data is toggled in and out of the device through the use of the WRITE (\overline{W}) and READ (\overline{R}) pins. The devices have a read/write cycle time of 30ns (min.) for commercial and 40ns (min.) for military temperature ranges.

The devices utilize a 9-bit wide data array to allow for control and parity bits at the user's option. This feature is especially useful in data communications applications where it is necessary to use a parity bit for transmission/reception error checking.

IDT's Military FIFO modules have semiconductor components manufactued in compliance with the latest revision of MIL-STD-883 Class B, making them ideally suited to applications demanding the highest level of performance and reliability.

PIN CONFIGURATION(1)


NOTE:

 For module dimensions, please refer to drawing M1 in the packaging section.

PIN NAMES

W =	FL =	XI =	EF =
WRITE	FIRST LOAD	EXPANSION IN	EMPTY FLAG
R=	D =	XO =	Vcc =
READ	DATAIN	EXPANSION OUT	POWER
RS =	Q=	FF =	GND =
RESET	DATAOUT	FULL FLAG	GROUND

FUNCTIONAL BLOCK DIAGRAM

CEMOS is a trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

SEPTEMBER 1990

©1990 Integrated Device Technology, Inc.

8.12- (

DSC-7027/-

2717 tbl 03

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	٧
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
lout	DC Output Current	50	50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliabilty.

RECOMMENDED DC **OPERATING CONDITIONS**

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcсм	Military Supply Voltage	4.5	5.0	5.5	>
Vcc	Commercial Supply Voltage	4.5	5.0	5.5	٧
GND	Supply Voltage	0	0	0	٧
VIH ⁽¹⁾	Input High Voltage Commercial	2.0	_		٧
VIH	Input High Voltage Military	2.2	_	_	٧
VIL ⁽¹⁾	Input Low Voltage Commercial and Military	_	_	0.8	٧

2717 tb! 02

2717 tbl 04

1. 1.5V undershoots are allowed for 10ns once per cycle.

NOTE:

CAPACITANCE (TA = +25°C, f = 1.0 MHz)

			·	
Symbol	Parameter ⁽¹⁾	Condition	Max.	Unit
Cin	Input Capacitance	VIN = OV	40	рF
Соит	Output Capacitance	Vout = 0V	60	pF

NOTE:

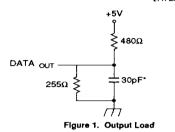
1. This parameter is guaranteed by design but not tested.

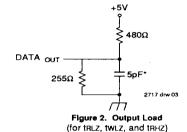
DC ELECTRICAL CHARACTERISTICS

 $(VCC = 5.0V \pm 10\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C \text{ and } -55^{\circ}C \text{ to } +125^{\circ}C)$

			205S ⁽⁵⁾ 206S ⁽⁵⁾	IDT7M2 IDT7M2		
Symbol	Parameter	Min.	Мах.	Min.	Max.	Unit
LI ⁽¹⁾			5		10	μА
lloLl ⁽²⁾	Output Leakage Current	_	10		10	μA
Voн	Output Logic "1" Voltage IOUT = -2mA	2.4		2.4		V
Val	Output Logic "0" Voltage IOUT = 8mA	_	0.4	-	0.4	V
ICC1 ⁽³⁾	Average Vcc Power Supply Current	-	640		350	mA
Icc2 ⁽³⁾	Average Standby Current ($\overline{R} = \overline{W} = \overline{RST} = \overline{FL/RT} = VH$)	_	60		100	mA
Icc3 ⁽³⁾	Power Down Current (All Input = Vcc - 0.2V)	_	32		48	mA

NOTES:


- Measurements with 0.4 ≤ ViN ≤ Vout.
- $\overline{R} \ge V_{H}, 0.4 \le V_{OUT} \le V_{CC}$
- 3. Icc measurements are made with outputs open.
- 4. taa = 40, 50, 60, 70, 85, 120ns
- 5. taa = 20, 25, 30, 35ns


2

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figure 1, 2 & 3

2717 tbl 06

* Includes scope and jig capacitances.

AC ELECTRICAL CHARACTERISTICS

 $(VCC = 5.0V \pm 10\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C \text{ and } -55^{\circ}C \text{ to } +125^{\circ}C)$

			05S20 06S20 I Only)	7M2	05S25 06S25 'I Only)		05530 06530)5S35)6S35	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tRC	Read Cycle Time	30	_	35	_	40	_	45		ns
tA	Access Time		20		25	_	30	_	35	ns
trr	Read Recovery Time	10	_	10	_	10		10		ns
tRPW ⁽¹⁾	Read Pulse Width	20		25	_	30	_	35		ns
tRLZ ⁽²⁾	Read Pulse Low to Data Bus at Low Z	5	_	5		5		5		ns
twLZ ⁽²⁾	Write Pulse High to Data Bus at Low Z	5		5	_	10		10	_	ns
tDV	Data Valid from Read Pulse High	5	_	5		5		5	_	ns
tRHZ ⁽²⁾	Read Pulse High to Data Bus at High Z	<u> </u>	13	<u> </u>	20	_	20	T —	20	ns
twc	Write Cycle Time	30		35	_	40	_	45	_	ns
twpw ⁽¹⁾	Write Pulse Width	20	_	25	_	30	_	35	_	ns
twn	Write Recovery Time	10		10	-	10	_	10	_	ns
tos	Data Set-up Time	15	_	18		18		20		ns
tDH	Data Hold Time	0		0	_	0	_	0	_	ns
trsc	Reset Cycle Time	30	_	35	_	40		45	_	ns
tas ⁽¹⁾	Reset Pulse Width	20		25		30	_	35		ns
trish	Reset Recovery Time	10	_	10	_	10	_	10	_	ns
tEFL	Reset to Empty Flag Low		30	_	35	_	40 .	T	45	ns
tREF	Read Low to Empty Flag Low	1 —	20	_	25	_	30	-	35	ns
tRFF	Read High to Full Flag High	_	23		25	_	30	-	35	ns
tweF	Write High to Empty Flag High	_	23		25	_	30	 	35	ns
tWFF	Write Low to Full Flag Low	_	20		25	_	30	_	35	ns

^{1.} Pulse widths less than minimum value are not allowed.

^{2.} This parameter is guaranteed by design but not tested.

AC ELECTRICAL CHARACTERISTICS

 $(VCC = 5.0V \pm 10\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C \text{ and } -55^{\circ}C \text{ to } +125^{\circ}C)$

		7M205S40 7M206S40								7M205S70 7M206S70		7M205S85 7M206S85		7M205S120 7M206S120		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit		
tRC	Read Cycle Time	50	_	65		75	_	85	_	105		140		ns		
tA	Access Time	_	40	_	50		60	_	70	_	85	_	120	ns		
trr	Read Recovery Time	10		15		15		15	_	20		20		ns		
tRPW ⁽¹⁾	Read Pulse Width	40		50		60	_	70	_	85	_	120		ns		
tRLZ ⁽²⁾	Read Pulse Low to Data Bus at Low Z	5		10		10	_	10	_	10		10		ns		
twLZ ⁽²⁾	Write Pulse High to Data Bus at Low Z	10		15		15		15	_	20		20	_	ns		
tDV	Data Valid from Read Pulse High	5	_	5		5		5	_	5		5		ns		
tRHZ ⁽²⁾	Read Pulse High to Data Bus at High Z	I —	25		30	_	30		30		30		35	ns		
twc	Write Cycle Time	50	_	65	_	75	_	85	_	105		140		ns		
twpw ⁽¹⁾	Write Pulse Width	40	_	50	_	60	_	70		85		120		ns		
twR	Write Recovery Time	10		15	_	15	_	15	-	20		20		ns		
tDS	Data Set-up Time	20		30	_	30		30		40		40		ns		
tDH	Data Hold Time	0		5	_	5		10		10		10		ns		
tRSC	Reset Cycle Time	50	_	65	_	75	_	85		105		140	_	ns		
tRS ⁽¹⁾	Reset Pulse Width	40		50	_	60		70	_	85		120	_	ns		
trsr	Reset Recovery Time	10	_	15	_	15	_	15	_	20		20		ns		
tEFL	Reset to Empty Flag Low	_	55		65		75		85	-	105		140	ns		
tREF	Read Low to Empty Flag Low	—	40	-	50	-	60	_	70	_	85		120	ns		
tref	Read High to Full Flag High	_	40	=	50	_	60	_	70	_	85		120	ns		
twer	Write High to Empty Flag High	1 –	40	_	50	_	60		70	_	85	_	120	ns		
tWFF	Write Low to Full Flag Low	<u> </u>	40	T —	50	_	60		70	_	85	_	120	ns		

NOTES:

1. Pulse widths less than minimum value are not allowed.

2. This parameter is guaranteed by design but not tested.

2717 tbl 08

SIGNAL DESCRIPTIONS:

INPUTS:

DATA IN (Do-Ds)

Data Inputs for 9-bit wide data path.

CONTROLS:

RESET (RS)

Reset is accomplished whenever the RESET (\overline{RS}) input is taken to a low state. During RESET, both internal read and write pointers are set to the first location. A reset is required after power up before a write operation can take place. Both the READ ENABLE (\overline{R}) and WRITE ENABLE (\overline{W}) inputs must be in the high state during reset.

WRITE ENABLE (W)

A write cycle is initiated on the falling edge of this input if the FULL FLAG (\overline{FF}) is not set. Data set-up and hold times must be adhered to with respect the the rising edge of the WRITE ENABLE (\overline{W}). Data is stored in the RAM array sequentially and independently of any ongoing read operation.

To prevent data overflow, the FULL FLAG (FF) will go low, inhibiting further write operations. Upon the completion of a valid read operation, the FULL FLAG (FF) will go high after tRFF, allowing a valid write to begin.

READ ENABLE (R)

A read cycle is initiated on the falling edge of the READ ENABLE (R) provided the EMPTY FLAG (E) is not set. The data is accessed on a first-in/first-out basis independent of any ongoing write operations. After READ ENABLE (R) goes high, the Data Outputs (Qo through Qa) will return to a high impedance condition until the next READ operation. When all the data has been read from the FIFO, the EMPTY FLAG (E) will go low, inhibiting further read operations with the data

outputs remaining in a high impedance state. Once a valid write operation has been accomplished, the EMPTY FLAG (EF) will go high after tWEF and a valid READ can then begin.

FIRST LOAD (FL)

This pin is grounded to indicate that it is the first device. In the multiple module (depth expansion mode) application, this pin on the rest of devices should connect to Vcc for proper operation.

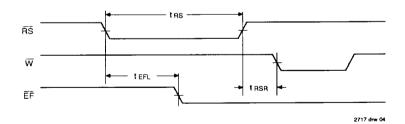
EXPANSION IN (XI)

EXPANSION IN (\overline{XI}) is connected to EXPANSION OUT (\overline{XO}) of the previous (in depth expansion) or same device for proper applications.

OUTPUTS:

FULL FLAG (FF)

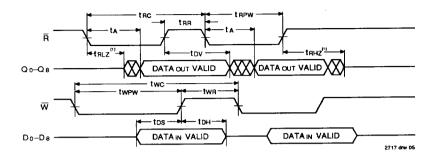
The FULL FLAG (FF) will go low, inhibiting further write operation, when the write pointer is one location from the read pointer, indicating that the device is full. If the read pointer is not moved after RESET (RS), the FULL FLAG (FF) will go low after 8,192 writes for the IDT7M205 and 16,384 writes for the IDT7M206.

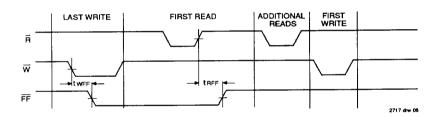

EXPANSION OUT (XO)

EXPANSION OUT (\overline{XO}) is connected to the EXPANSION IN (\overline{XI}) of the same device (single device mode) or the EXPANSION IN (\overline{XI}) of the next device (multiple device, depth expansion mode) for proper operation. This output acts as a signal to the next device by providing a pulse to the next device when the current device reaches the last location of memory.

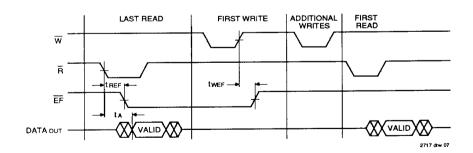
DATA OUTPUTS (Qo-Q8)

Data outputs for a 9-bit wide data. This output is in a high impedance condition whenever READ (R) is in a high state.


TIMING WAVEFORM OF RESET CYCLE^(1,2)

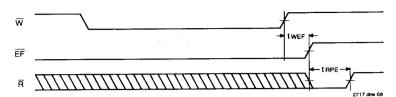

NOTES:

- 1. tasc = tas + tasa
- 2. W and R = VIH during RESET.


TIMING WAVEFORM FOR ASYNCHRONOUS WRITE AND READ OPERATION

TIMING WAVEFORM OF THE FULL FLAG FROM LAST WRITE TO FIRST READ

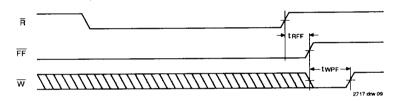
TIMING WAVEFORM OF THE EMPTY FLAG FROM LAST READ TO FIRST WRITE



NOTE:

1. This parameter is guaranteed by design but not tested.

TIMING WAVEFORM FOR THE EMPTY FLAG



NOTE: 1. (trpe = trpw)

TIMING WAVEFORM FOR THE FULL FLAG

TRPE EFFECTIVE READ PULSE WIDTH AFTER FULL FLAG HIGH (1)

NOTE: 1. (twpf = twpw)

OPERATING MODES

SINGLE DEVICE MODE

A single IDT7M205/206 may be used when the application requirements are for 8,192/16,384 words or less. The IDT7M205/206 is in a Single Device Configuration when the EXPANSION IN (\overline{X}) control input is connected to the EXPANSION OUT (\overline{X}) of the device and the FIRST LOAD (\overline{F}) control pin is grounded (see Figure 8).

WIDTH EXPANSION MODE

Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Status flags (EF and FF) can be detected from any one device. Figure 9 demonstrates an 18-bit word width by using two IDT7M205/206s. Any word width can be attained by adding additional IDT7M205/206s.

DEPTH EXPANSION (DAISY CHAIN) MODE

The IDT7M205/206 can easily be adapted to applications when the requirements are for greater than 8,192/16,384 words. Figure 10 demonstrates Depth Expansion using three IDT7M205/206s. Any depth can be attained by adding additional IDT7M205/206s. The IDT7M205/206 operate in the Depth Expansion configuration when the following conditions are met:

- The first device must be designated by grounding the FIRST LOAD (FL) control input.
- 2. All other devices must have FL in the high state.
- 3. The EXPANSION OUT (XO) pin of each device must be tied to the EXPANSION IN (XI) pin of the next device.

(See Figure 10.)

 External logic is needed to generate a composite FULL FLAG (FF) and EMPTY FLAG (EF). This requires the logical ANDing of all EFs and logical ANDing of all FFs (i.e. all must be set to generate the correct composite FF or EF). (See Figure 10.)

COMPOUND EXPANSION MODE

The two expansion techniques described above can be applied together in a straight forward manner to achieve large FIFO arrays (see Figure 11).

BIDIRECTIONAL MODE

Applications which require data buffering between two systems (each system capable of Read and Write operations) can be achieved by pairing IDT7M205/206s as shown in Figure 12. Care must be taken to assure that the appropriate flag is monitored by each system (i.e., \overline{FF} is monitored on the device where \overline{W} is used; \overline{EF} is monitored on the device where \overline{K} is used). Both Depth Expansion and Width Expansion may be used in this mode.

DATA FLOW-THROUGH MODES

Two types of flow-through modes are permitted with the IDT7M205/206: a read flow-through mode and write flow-through mode. For the read flow-through mode (Figure 13), the FIFO permits a reading of a single word of data immediately after writing one word of data into the completely empty FIFO.

In the write flow-through mode (Figure 14), the FIFO permits a writing of a single word of data immediately after reading one word of data from a completely full FIFO.

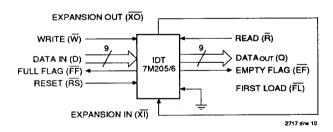
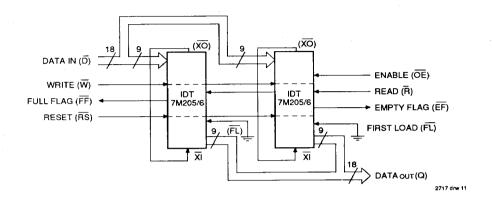



Figure 8. Block Diagram of Single IDT7M205/206 FIFO

NOTE:

1. Flag detection is accomplished by monitoring the FF and EF signals on either (any) device used in the width expansion configuration. Do not connect any output control signals together.

Figure 9. Block Diagram of 8,192 x 18/16,384 x 18 FIFO Memory Used in Width Expansion Mode

TRUTH TABLES TABLE I—RESET

Single Device Configuration/Width Expansion Mode

	Inp	uts	Interna	al Status	Out	puts
Mode	RS XI Read Pointer		Write Pointer	EF	FF	
Reset	0	0	Location Zero	Location Zero	0	1
Read/Write	1	0	Increment ⁽¹⁾	Increment ⁽¹⁾	X	X

NOTE:

1. Pointer will increment if flag is High.

2717 tbl 08

TABLE II—RESET AND FIRST LOAD TRUTH TABLE

Depth Expansion/Compound Expansion Mode

	Inputs			Interr	al Status	Outputs		
Mode	Mode RS FL		प्रा	Read Pointer	Write Pointer	EF	#	
Reset First Device	0	0	(1)	Location Zero	Location Zero	0	1	
Reset All Other Devices	0	1	(1)	Location Zero	Location Zero	0	1	
Read/Write	1	X	(1)	Х	X	X	Х	

NOTE:

XII is connected to XO of previous device. See Figure 10.
RS = Reset Input FL = First Load, EF = Empty Flag Output, FF = Flag Full Output, XI = Expansion Input.

2717 tbl 09

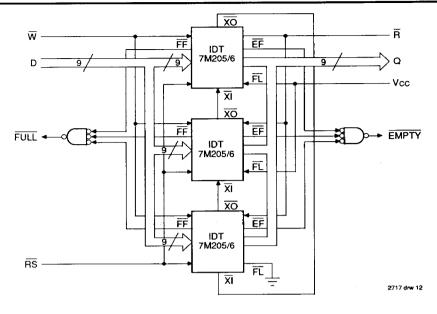


Figure 10. Block Diagram of 24,576 x 9/49,152 x 9 FIFO Memory (Depth Expansion)

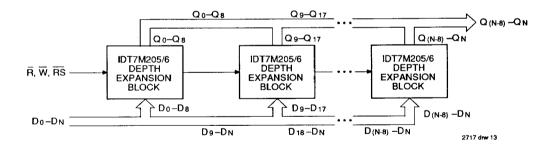


Figure 11. Compound FiFO Expansion

NOTES:

- 1. For depth expansion block see DEPTH EXPANSION Section and Figure 10.
- 2. For Flag detection see WIDTH EXPANSION Section and Figure 9.

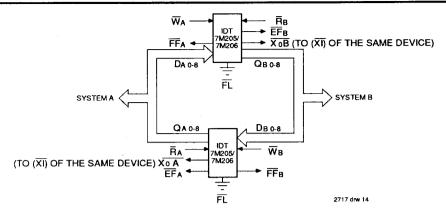


Figure 12. Bidirectional FIFO Mode

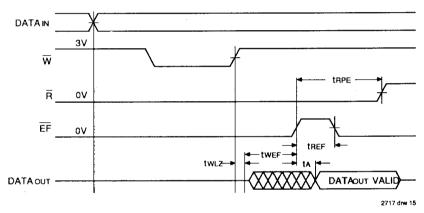


Figure 13. Read Data Flow-Through Mode

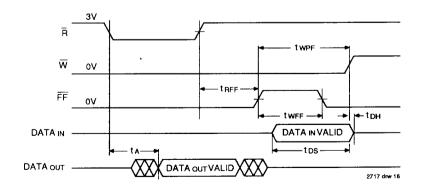
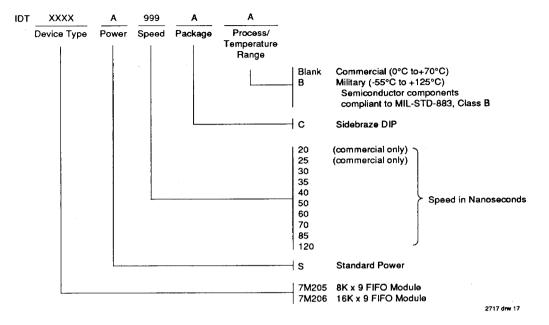



Figure 14. Write Data Flow-Through Mode

8

ORDERING INFORMATION

