INMOS CORP
inmos

108 D l yan2kLad 0003286 E_’I

Chapter 3 T4 17-5]

IMS T800

engineerin
data g

[e—

. _ -
INNOS CORP 7-49-/7-57 10e » l usozuas ooo3ess v i
46
1 Introduction
Floating Point Unit
VCC — o~
GND —] «
CapPlus — N 32 bit
CapMinus 39 Processor
Reset —¥
Analyse—"’ System
Errorin Services LinkSpecial
Error €4— Link < inkspecia
BootFromROM — Semvices | & LinkoSpecial
Clockin —® 44— Link123Special
ProcSpeed A?h Link 4—— LinkIn0
Select0-2 N N —L_Interface — | jnkOuto
imers
AN ;
32 Link 4— Linkin1
4 Kovt N —__Interface — LinkOut1
ytes
of —N /L‘a"z'—’\ Link 4— LinkIn2
On-chip 32 \——1A__Intertace —® LinkOut2
RAM 1 N
32 Link 44— LinkIn3
ProcClockOut ¢ \——14__[nterface [LinkOut3
A N
notMemS0-4 @— <
notMemWrB0-3 €¢— \rSLV Event > EventReq
N ven
notMemRd ¢— slxternal - EventAck
notMemRf 4— lemfory
Memwait—{ 'Meriace MemAD2-31
MemConfig—® < 32 > MemnotRfD1
MemReq MemnotWrDO

MemGranted 4

Figure 1.1: IMS T800 block diagram

- INMOS CORF T 449./7.6) 1gE » B ss02c88 op3zao o |

1 Introduction 47

The IMS T800 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support.
it has 4 Kbytes on-chip RAM for high speed processing, a configurable memory interface and four standard
INMOS communication links. The instruction set achieves efficient implementation of high level languages
and provides direct support for the occam model of concurrency when using either a single transputer or a
network. Procedure calls, process switching and typical interrupt latency are sub-microsecond.

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum aliowed
for the part. A davice running at 30 MHz achieves an instruction throughput of 15 MIPS,

The IMS T800 provides high performance arithmetic and floating point operations. The 64 bit floating point unit
provides single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic.
It is able to perform floating point operations concurrently with the processor, sustaining a rate of 1.5 Mfiops
at a processor speed of 20 MHz and 2.25 Mflops at 30 MHz.

High performance graphics support is provided by microcoded block move instructions which operate at the
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well
as biock copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used
to provide graphics operations such as text manipulation, windowing, panning, scralling and screen updating.

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams,
to provide error detection where data integrity is critical. Another feature of the IMS T800, useful for pattern
recognition, is the facility to count bits set in a word.

The IMS T800 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface

uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds_

(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM
refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis. Error
signals may be daisy-chained in multi-transputer systems.

The standard INMOS communication links allow networks of transputer family products to be constructed by
direct point to point connections with no external logic. The IMS T800 links support the standard operating
speed of 10 Mbits per second, but also operate at 5 or 20 Mbits per second. Each link can transfer data
bi-directionally at up to 2.35 Mbytes/sec.

The IMS T800-20 is pin compatible with the IMS T414-20, as the extra inputs used are all held to ground on
the IMS T414. The IMS T800-20 can thus be plugged directly into a circuit designed for a 20 MHz version of
the IMS T414. Software should be recompiled, although no changes to the source code are necessary.

The transputer is designed to implement the occam language, detailed in the 0ccam Reference Manual,
but also efficiently supports other languages such as C, Pascal and Fortran. Access 1o specific features of
the IMS T800is described in the relevant system development manual. Access to the transputer at machine
level is seldom required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T800. Itis intended
to be read in conjunction with the Transputer Reference Manual, which details the architecture of the transputer
and gives an overview of occam.

For convenience of description, the IMS T800 operation is split into the basic blocks shown in figure 1.1.

e ————————yreeire o 31+

INMOS CORP T-49-/7-5/ woe » I vsozess ooozemy 2 B

48

2

Pin designations

Table 2.1: IMS T800 system services

Pin In/Qut Function
VCC, GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in Input clock
ProcSpeedSelect0-2 in Processor speed selectors
Reset in System reset
Error out Error indicator
Errorin in Error daisychain input
Analyse in Error analysis
BootFromRom in Boot from external ROM or from link
HoldToGND Must be connected to GND
DoNotWire Must not be wired

Table 2.2: IMS T800 external memory interface

Pin In/Out) Function
ProcClockOut out Processor clock
MemnotWrDO infout | Multiplexed data bit 0 and write cycle warning
MemnotR{D1 infout | Multiplexed data bit 1 and refresh warning
MemAD2-31 infout | Multiplexed data and address bus
notMemRd out Read strobe
notMemWrB0-3 out Four byte-addressing write strobes
notMemS0-4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3: IMS T800 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4: IMS T800 link

Pin In/Out Function
Linkin0-3 in Four serial data input channels
LinkOut0-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
Link0Special in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 160.

INMOS CORP T- ¥9./7.%/ 10e b | usoaess ngozess y B

49

3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers
The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of

registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.
The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, B and C registers which form an evaluation stack.

A, B and C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes Binto C, and A into B, before loading A. Storing a value from A, pops Binto A and Cinto B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For exampie,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity,

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers’ Guide.

Registers Locals Program

A

B

C
Workspace —
Next inst)

Operand

Figure 3.1: Registers

RSSO NN

INmos CORP T - 4#9-/7- 57 1oe v [usoeess ooo3eda b B

50 3 IMS T800 engineering data

3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in-
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

|Function I Data J
7 43 L 0

I Operand Register | J

Figure 3.2: Instruction format

3.21 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these, shown in table 3.1, are used to encode the most important functions. .

Table 3.1: Direct functions

load constant add constant

load local store local load local pointer
load non-local store non-local

jump conditional jump call

The most common operations in a program are the loading of small literal vaiues and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction’s operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

CINMOS CORPT 7-4#9. /7- &) 10E p | 4a02nes Opo3aqu & |

3 Processor ’) 51

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.23 indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as

add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.24 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2: Expression evaluation

Program Mnemonic
x:=0 Idc 0
stl b 4
X = #24 pfix 2
Idc 4
st e
X=y+2z dl y
Idl z

add
st X

3.25 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

INMOS CORP /- #7- /7-5/ 10e b] usozess oooszds o]

52 "3 IMS T800 engineering data

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number

of each (page 53).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe-
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active - Being executed.
- On a list waiting to be executed.

Inactive - Ready to input.
- Ready to output.
- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. [t allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 53). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals Program
FPtr1 (Front) |——» IS
P I
BPtr1 (Back) |—
>
Q 4—
A >
o — R ¢
c e s
—
Workspace
Next Inst >
Operand

Figure 3.3: Linked process list

Table 3.3: Priority queue control registers

Function High Priority | Low Priority
Pointer to front of active process list Fptr0 Fptr1
Pointer to back of active process list Bptr0 Bptri

INMOS CORP T -47-/7-5, 10E D I 4802LA8 0003296 LI

3 Processor 53

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 57). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1ms apart.

A process can only be descheduled on certain instructions, known as descheduling points (page 57). As a
fesult, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 us, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the paraliel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For alil but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

34 Priority

The IMS T800 supports two fevels of priority. Priority 1 (low priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks. .

If there are n fow priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice petiods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (page 57).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 millisecond at
the standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM).
If the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles.
To ensure this latency, certain instructions are interruptable.

INMOS CORP 7 - %9./7-5, 1oe b Jj veozess ooo3e9? 3 |

54 "~ 3 IMS T800 engineering data

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to-
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and oulput message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an inpuf message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 32 bit timer clocks which ‘tick’ periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time. ’

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com-
pletely in approximately 4295 milliseconds. The other is accessible only to low priority processes and is
incremented every 64 microseconds, giving exactly 15625 ticks in one second. it has a full period of approx-
imately 76 hours. -

Table 3.4: Timer registers

Clocko Current value of high priority (level 0) process clock

Clock1 Current value of low priority (level 1) process clock

TNextReg0 Indicates time of earliest event on high priority (level 0) timer queue
TNextReg1 Indicates time of earliest event on low priority (leve! 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to-be specified. If this time is in the ‘past’ then the
instruction has no effect. If the time is in the ‘future’ then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

INMOS CORP 7 -4#9-/7- &7 10 DMI 4402L4848 Opp3zgs

3 Processor

55

Program

Workspaces
TimerQ
— 21
TNextReg0
TPtrLoco | ! Empty
31 [

Figure 3.4: Timer registers

INMOS CORP 7 - ¥2-/7-5/ LOE D luaneaaa 0003299 ? I

56

4 instruction set summary

The Function Codes table 4.8. gives the basic function cade set (page 50). Where the operandis less than 16,
a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix)
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction

will be nfix.

Table 4.1: prefix coding

Function Memory
Mnemonic code code

Ide #3 #4 #43
Idc #35

is coded as
pfix #3 #2 #23
Ide ’ #5 #4 #45
Idc #987

is coded as
pfix #9 #2 #29
pfix #8 #2 #28
lde #7 #4 #47
Idc 31 (ldc #FFFFFFE1)

is coded as
nfix #1 #6 #61
lde #1 #4 #41

Tables 4.9 to 4.13 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),

the prefix function code 2 is used to extend the instruction.

Table 4.2: operate coding

Function Memory
Mnemonic code code
add {op. code #5) #F5
is coded as
opr add #F #F5
ladd (op. code #16) #21F6
is coded as
pfix #1 #2 #21
opr #6 #F #F6

In the Floating Point Operation Codes tables 4.21 to 4.27, a selector sequence code (page 65) is indicated
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the

operand for the /dc instruction.

The FPU and processor operate concurrently, so the actual throughput of floating point instructions is better
than that implied by simply adding up the instruction times. For full details see The Transputer Instruction Set

- A Compiler Writers’ Guide.

INMOS CORP T°- ¥9./7-57/ 106 b | vananss 0go33no o B

4 Instruction set summary 57

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing in
internal memory. The number of cycles is given for the basic operation only; where relgvant the time for the
prefix function (one cycle) should be added. For a 20 MHz transputer one cycle is 50ns. Some instruction
times vary. Where a letter is included in the cycles column it is interpreted from table 4.3.

Table 4.3: Instruction set interpretation

Ident Interpretation
b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.
m Bit number of the highest bit set in the absolute value of register A.

Bit 0 is the least significant bit.

n Number of places shifted.

Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

Number of words per row.
r Number of rows.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4: Instruction features

Ident Feature See page:
D The instruction is a descheduling point 57
E The instruction will affect the Error flag 58, 72
F The instruction will affect the FP_Error flag 65, 58
44 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 52). They are
also the ones at which the processor will halt if the Analyse pin is asserted.(page 71).

Table 4.5: Descheduling point instructions

input message output message ouiput byte output word
timer alt wait timer input stop on error alt wait
jump loop end end process stop process

INMOS CORP 7= #9-/7-5/ 10e v | vsnznas ooo3sos 3 Jj

58 3 IMS T800 engineering data

4.2 Error instructions
The instructions in table 4.6 are the only ones which can affect the Error flag (page 72) directly. Note,

however, that the floating point unit error flag FP_Error is set by certain floating point instructions (page 58),
and that Error can be set from this flag by focheckerror.

Table 4.6: Error setting instructions

add add constant subtract

multiply fractional multiply divide remainder

long add long subtract long divide

set error testerr focheckerror

check word check subscript from 0 check single check count from 1
4.3 Floating point errors

The instructions in table 4.7 are the only ones which can affect the fioating point error flag FP_Error (page 65).
Erroris set from this flag by focheckerror if FP_Error is set.

Table 4.7: Floating point error setting instructions

fpadd fpsub fomul fodiv
fpldnladdsn fpldniadddb fpldnimulsn fpldnimuldb
foremfirst fpusqrttirst fogt fpeq
fouseterror fpuclearerror fotesterror

fpuexpincby32 fpuexpdecby32 foumulby2 foudivby2
fpur32tor64 fpur64tor32 foucki32 fpucki64
fortoi32 fouabs foint

INMOS CORP 7 -49-/7.57 10 D B us02tas 0003302

4 Instruction set summary 59
Table 4.8: IMS T800 function codes
Function Memory Processor D
Code Code Mnemonic Cycles Name E
0 0X i 3 jump b
1 1X ldip 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-locat
4 4X Idc 1 load constant
5 5X ldnip 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idi 2 load local
8 8Xx adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)
4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate
Table 4.9: IMS T800 arithmetic/logical operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24F0 shr n+2 shift right
05 F5 add 1 add E
10 FC sub 1 subtract E
53 25F3 mul 38 fractional multiply (no rounding) E
72 27F2 fmul 35 fractional multiply (rounding) E
40 multiply E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product for positive register A
m+5 product for negative register A

INMOS CORP T -4#9-/7-57/

yoe »] usoaues ooo3aoa s i

60 3 IMS T800 engineering data
Table 4.10: IMS T800 long arithmetic operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 2 long sum
4F 24FF Idiff 2 long diff
31 23F1 Imul a3 long multiply
1A 21FA Idiv 35 long divide E
36 23F6 Ishl n+3 long shift left (n<32)
n-28 long shift left(n>32)
35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n>32)
19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n>32)
3 normalise (n=64)
Table 4.11: IMS T800 general operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
00 FO rev 1 reverse
3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
1D 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer
Table 4.12: IMS T800 block move operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
58 25FB move2dinit 8 initialise data for 2D block move
5C 25FC move2dall (2p+23)sr | 2D block copy
5D 25FD move2dnonzero (2p+23)+r | 2D block copy non-zero bytes
5E 25FE move2dzero (2p+23)+r | 2D block copy zero bytes
Table 4.13: IMS T800 CRC and bit operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte
76 27F6 bitent b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4 reverse bottom n bits in byte

,w.__._.___,..._,.m......_.....v.

T-49-17-5

10 » B yaozues ooozzoy 7

!

INMOS CORP
4 Instruction set summary 61
Table 4.14: IMS T800 indexing/array operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
02 F2 bsub 1 byte subscript
0A FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bent 2 byte count
3F 23FF went 5 word count
01 F1 b 5 load byte
3B 23FB sb 4 store byte
4A 24FA move 2w+8 move message
Table 4.15: IMS T800 timer handling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
22 22F2 Idtimer 2 load timer
28 22FB tin 30 timer input (time future) D
4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D
48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer
Table 4.16: IMS T800 input/output operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
07 F7 in 2w+19 input message D
0B FB out 2w+19 output message D
OF FF outword 23 output word D
0E FE outbyte 23 output byte D
12 21F2 resetch 3 reset channel
43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D
17 alt wait (channe! not ready) D
45 24F5 altend 4 alt end
49 24F9 enbs 3 enable skip
30 23F0 diss 4 disable skip
48 24F8 enbc 7 enable channel (ready)
5 enable channel {not ready)
2F 22FF disc 8 disable channel

INMos CORP T+ #9-/7-57 10t b B usoonss 0o0o330s s B

62 3 IMS T800 engineering data
Table 4.17: IMS T800 control operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
20 22F0 ret 5 return
1B 21FB ldpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
5A 25FA dup 1 duplicate top of stack
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D
5 loop end (exit) D
Table 4.18: IMS T800 scheduling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
oD FD startp 12 start process D
03 F3 endp 13 end process b
39 23F9 unp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority
Table 4.19: IMS T800 error handling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
13 21F3 csub0 2 check subscript from 0 E
4D 24FD centl 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)
3 test error false and clear {error)
10 21F0 seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) b
57 25F7 clrhatterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error
Table 4.20: IMS T800 processor initialisation operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25F0 sthb 1 store high priority back pointer
iC 21FC stif 1 store low priority front pointer
17 21F7 stib 1 store low priority back pointer
54 25F4 sttimer 1 store timer

. - o
INMOS CORP T - 4#9-77-5/10E 1 N 1502088 0op33ng Dl

4 Instruction set summary 63
Table 4.21: IMS T800 floating point load/store operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
8E 28FE fpldnisn 2 fp load non-local single
8A 28FA fpldnidb 3 fp load non-local double
86 28F6 fpldnisni 4 fp load non-local indexed single
82 28F2 fpldnidbi 6 fp load non-local indexed double
9F 29FF fpldzerosn 2 load zero single
A0 2AF0 fpldzerodb 2 load zero double
AA 2AFA fpldnladdsn 8/11 fp load non local & add single F
A6 2AF6 fpldniadddb 9/12 fp load non local & add double F
AC 2AFC fpldnimulsn 13/20 fp load non local & muitiply single F
A8 2AF8 fpidnimuldb 21/30 fp load non local & muitiply double F
88 28F8 fpstnlsn 2 fp store non-local single
84 28F4 fpstnidb 3 fp store non-local double
9E 29FE fpstnli32 4 store non-local int32
Processor cycles are shown as Typical/Maximum cycles.
Table 4.22: IMS T800 floating point general operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
AB 2AFB fpentry 1 floating point unit entry
Ad 2AF4 fprev 1 fp reverse
A3 2AF3 fpdup 1 fp duplicate
I
Table 4.23: IMS T800 fioating point rounding operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
22 s fpurn 1 set rounding mode to round nearest
06 s fpurz 1 set rounding mode to round zero
04 s fpurp 1 set rounding mode to round positive
05 s fpurm 1 set rounding mode to round minus
Table 4.24: iMS T800 floating point error operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
83 28F3 fpchkerror 1 check fp error E
9C 29FC fptesterror 2 test fp error false and clear F
23 s fpuseterror 1 set fp error F
9C] fpuclearerror 1 clear fp error F

R o ~ N oo ! ;'
p33a7 ¢ i ;
INMOS CORP T -4#9./7-&) 10E D l wa02L&s 00
64 3 IMS T800 engineering data
Table 4.25: IMS T800 floating point comparison operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
94 29F4 fpgt 4/6 fp greater than F
95 29F5 fpeq 3/5 fp equality F
92 29F2 fpordered 3/4 fp orderability
91 29F1 fpnan 2/3 fp NaN
93 29F3 fpnotfinite 2/2 fp not finite
OE s fpuchki32 3/4 check in range of type int32 F
OF s fpuchki64 3/4 check in range of type int64 F
Processor cycles are shown as Typical/Maximum cycles.
Table 4.26: IMS T800 floating point conversion operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
07 s fpur32tor64 3/4 real32 to real64 F
08 s fpur64tor32 6/9 real64 to real32 F-
9D 29FD fprtoi32 7/9 real to int32 F
96 29F6 fpi32tor32 8/10 int32 to real32
98 29F8 fpi32tor64 8/10 int32 to real64
9A 29FA fpb32tor64 8/8 bit32 to real64
0D s fpunoround 2/2 realé4 to real32, no round
Al 2AF1 fpint 5/6 round 1o floating integer F
Processor cycles are shown as Typical/Maximum cycles.
Table 4.27: IMS T800 floating point arithmetic operation codes
Operation | Memory Processor cycles D
Code Code Mnemonic Single | Double Name E
87 28F7 fpadd 6/9 6/9 fp add F
89 28F9 fpsub 6/9 6/9 fp subtract F
88 28FB fpmul 11/18 18/27 | fp multiply F
8c 28FC fpdiv 16/28 31/43 | fp divide F
0B s fpuabs 212 2/2 fp absolute F
8F 28FF fpremfirst 36/46 36/46 | fp remainder first step F
90 29F0 fpremstep 32/36 32/36 | fp remainder iteration
01 s fpusqrtfirst 27/29 27/29 | fp square root first step F
02 s fpusqrtstep 42/42 42/42 | tp square root step
03 s fpusqrtlast 8/9 8/9 fp square root end
0A s fpuexpinc32 6/9 6/9 multiply by 2%2 F
09 s fpuexpdec32 6/9 6/9 divide by 232 F
12 s fpumulby2 6/9 6/9 multiply by 2.0 F
11 s fpudivby2 6/9 6/9 divide by 2.0 F

Processor cycles are shown as Typlcal/Maximum cycles.

INMOS CORP 7= 49-/7-5/ 10t » J} yvao2e88 ooo3zos u B

65

5 Floating point unit

The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985.
Itis able to perform floating point arithmetic concurrently with the central processor unit (CPU), sustaining in
excess of 2.25 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs
under control of the CPU.

The FPU consists of a microcoded computing engine with a three deep floating point evaluation stack for
manipulation of floating point numbers. These stack registers are FA, FB and FC, each of which can hold
either 32 bit or 64 bit data; an associated flag, set when a floating point value is loaded, indicates which. The
stack behaves in a similar manner to the CPU stack (page 49).

As with the CPU stack, the FPU stack is not saved when rescheduling (page 52) occurs. The FPU can
be used in both fow and high priority processes. When a high priority process interrupts a low priority one
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its
current operation. The high priority process will not start, however, before the FPU has completed its current

operation.

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready.
The data transfer will then occur and both processors will proceed concurrently again. In order to make
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by
minimising the CPU and FPU idle times.

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985floating point arithmetic
standard. Denormalised numbers are fully supported in the hardware. Al rounding modes defined by the
standard are implemented, with the default being round to nearest.

The basic addition, subtraction, multiplication and division operations are performed by single instructions.
However, certain less frequently used floating point instructions are selected by a value in register A (when
aliocating registers, this should be taken into account). A load consfant instruction Idc is used to load

register A; the floating point entry instruction fpentry then uses this value fo select the floating point operation.
This pair of instructions is termed a selector sequence.

Names of operations which use fpentry begin with fpu. A typical usage, returning the absolute value of a
floating point number, would be

ldc fpuabs; foentry;

Since the indirection code for fpuabs is 0B, it would be encoded as

Table 5.1: fpentry coding

Function Memory
Mnemonic code code
lde fouabs #4 #4B
foentry (op. code #AB) #2AFB
is coded as
pfix #A #2 #2A
opr #B #F #FB

INMOS CORP T -4#9-/7-S5/ 10E D Iuauesaa 0003304 o &

66 3 IMS T800 engineering data

The remainder and square root instructions take considerably fonger than other instructions to complete. In
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences.
As an example, the instruction sequence for a single length square root is
fousqrtfirst; fousqrtstep; fousqristep; fousqrtlast;

The FPU has its own error flag FP.Error. This reflects the state of evaluation within the FPU and is
set in circumstances where invalid operations, division by zero or overflow exceptions to the ANSI-IEEE
754-1985standard would be flagged (page 58). FP.Erroris also set if an input to a floating point operation is
infinite or is not a number (NaN). The FP_Error flag can be set, tested and cleared without affecting the main
Error flag, but can also set Error when required (page 58). Depending on how a program is compiled, it is
possible for both unchecked and fully checked floating point arithmetic to be performed.

Further details on the operation of the FPU can be found in The Transputer instruction Set - A Compiler
Writers' Guide.

Table 5.2: Typical floating point operation times for IMS T800

T800-20 T800-30
Operation Single length Double length Single length Double length
add 350 ns 350 ns 233 ns 233 ns
subtract 350 ns 350 ns 233 ns 233 ns
multiply 550 ns 1000 ns 367 ns 667 ns
divide 850 ns 1600 ns 567 ns 1067 ns

Timing is for operations where both operands are normalised fp numbers.

nmos CoRP 7= 4#9-/7-57 ao0e » B uasoeess opo3ang - |

67

6 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

6.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power-
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

6.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, fow inductance 1uF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the nega-
tive terminal should be connected to CapMinus. Total PCB track length should be less than 50mm. The
connections must not touch power supplies or other noise sources.

vCccC
CapPlus P.C.B. track
I .
Phase-locked _LDg;;o:g;::g
loops T ? F
T— | u
f CapMinus P.C.B. track
GND

Figure 6.1: Recommended PLL decoupling

6.3 Clockin

Transputer family components use a standard clock frequency, supplied by the user on the Clockin input.
The nominal frequency of this clock for all transputer family components is 5SMHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockin,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. in a multi-clock system the relative phasing of Clock!n clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of ClockIn pulse widths are met.

Oscillator stability is important. Clockin must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockin must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

INMOS CORP T - 9. 17-57 10E D Iuanahaa 0003311 Y I

68 3 IMS T800 engineering data

Table 6.1: Input clock

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TDCLDCH | Clockin pulse width low 40 ns
TDCHDCL | Clockin pulse width high 40 ns
TDCLDCL | Clockin period 200 ns 1,3
TDCerror | Clockin timing error +0.5 ns 2
TDC1DC2 | Difference in Clockin for 2 linked devices 400 ppm 3
TDCr Clockln rise time 10 ns 4
TDCf Clockin fall time 8 ns 4
Notes

1 Measured between corresponding points on consecutive falling edges.
2 Variation of individual falling edges from their nominal times.
3 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 99).

Figure 6.2: Clockin timing

6.4 ProcSpeedSelect0-2

Processor speed of the IMS T800 is variable in discrete steps. The desired speed can be selected, up to the
maximum rated for a particular component, by the three speed select lines ProcSpeedSelect0-2. The pins
are tied high or low, according to the table below, for the various speeds. The ProcSpeedSelect0-2 pins
are designated HoldToGND on the IMS T414, and coding is so arranged that the IMS T800 can be plugged
directly into a board designed for a 20MHz IMS T414.

Only six of the possible speed select combinations are currently used; the other two are not valid speed
selectors. The frequency of Clockin for the speeds given in the table is 5 MHz.

R

INMOS CORP 7~ ¥9-/7-%5/ 10E b luanaeaa 0003312 b l |

6 System services 69

Table 6.2: Processor speed selection

Proc Proc Proc Processor Processor

Speed Speed Speed Clock Cycle

Select2 Selectt Select0 | Speed MHz Time nS Notes
0 0 0 20.0 50.0
0 0 1 225 44.4
0 1 0 25.0 40.0
0 1 1 30.0 333
1 0 0 35.0 28.6
1 0 1 Invalid
1 1 0 17.5 57.1
1 1 1 Invalid

Note: Inclusion of a speed selection in this table does not imply immediate availability.

6.5 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockin should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.

Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request °

(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 93).

After the end of Reset there will be a delay of 144 periods of Clockin (figure 6.3). Following this, the
MemWrD0, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuratiori (page 84). This lasts for a further 144 periods of ClockIn. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 85), in an- attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con-
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then fake place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

Reset |
Action |« >l internal >le External >l

Del
elay configuration configuration

Delay Refresh Boot

Figure 6.3: IMS T800 post-reset sequence

6.6 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot-
FromRom may be dynamically changed but must obey the specified timing restrictions.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. The processor is in the low priority state, and the W register points to MemStart (page 73).

INMOS CORP 7 - ¥49-/7-5/ L0E D I 4802LAA 0003313 & l
70 " 3 IMS T800 engineering data
Table 6.3: Reset and Analyse
SYMBOL PARAMETER MIN NOM | MAX | UNITS | NOTE

TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockin 1
TDCVRL | Clockin running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 ns
TBRVRL | BootFromRom setup 0 ms
TRLBRX | BootFromRom hold after Reset 50 ms
TALBRX | BootFromRom hold after Analyse 50 ms
Notes

1 Full periods of Clockin TDCLDCL required.

2 At power-on reset.

/[//
Clockin VA S S A
TDCVRL L—b
vee /E
TPVRH _ﬂqLHRL___.
Reset \\
/1l
TBRVRLP’Q / | ’ITRLBRX i
BootFromRom /// y // |
Figure 6.4: Transputer reset timing with Analyse low
TRHRL
Reset { :\ //
TAHRH j > TRLAL
Analyse
TBRVAL4# /III »{ TALBRX
BootFromRom y //)

Figure 6.5: Transputer reset and analyse timing

INMOS CORP T - 49-/7- 5/

6 System services 71

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on any one of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

if the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the fast byte the transputer will start executing code at MemStart as a low priority process. The
memory space immediately above the loaded code is used as work space. Messages arriving on other links
after the control byte has been received and on the bootstrapping fink after the last bootstrap byte will be
retained until a process inputs from them.

6.7 Peek and poke

Any location in internal or external memory can be interrogated and altered when the fransputer is waiting

for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The

first four byte word is taken as an internal or external memory address at which to poke (write) the second

four byte word. If the contro! byte is 1 the next four bytes are used as the address from which to peek (read)
" a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the controf byte.

6.8 Analyse

If Analyse is taken high when the transputer is running, the transputer will hait at the next descheduling
point (page 57). From Analyse being asserted, the processor will halt within three time slice periods plus
the time taken for any high priority process to complete. As much of the transputer status is maintained as
is necessary to permit analysis of the halted machine. Memory refresh continues.

input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer haiting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles wilt occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4.

Table 6.4: Register values after analyse

1 MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemSitart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of / when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (i.e. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.

w0t » J vaozues oooazw o |

s

INMOS CORP T - 49-/7-57 1oc v B vsoeuss ooo3zns 1l
72 3 IMS T800 engineering data

6.9 Error, Errorin

The Error pin carries the OR'ed output of the internal Error flag and the Errorln input. If Etror is high
it indicates either that Errorin is high or that an error was detected in one of the processes. An internal
error can be caused, for example, by arithmetic overflow, divide by zero, array bounds viofation or software
setting the flag directly (page 58). It can also be set from the floating point unit under certain circumstances
(page 58, 65). Once set, the Error flag is only cleared by executing the instruction testerr (page 56). The
error is not cleared by processor reset, in order that analysis can identify any errant transputer (page 71).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through fack of data. Errorin does
not directly affect the status of a processor in any way.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers
to halt. This can be done by 'daisy-chaining’ the Errorln and Error pins of a number of processors and
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since
the process state is preserved when stopped by an error, the master transputer can then use the analyse
function to debug the fault. When using such a circuit, note that the Error flag is in an indeterminate state on
power up; the circuit and software should be designed with this in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring wilt have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted
to the high priority process. Either flag can be altered in the process without upsetting the error status of any
complex aperation being carried out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due te the Error flag changing from 0 to 1 whilst HaltOnError is set, register / points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register / points
one byte past the instruction being executed. In both cases / will be copied to register A.

Analyse
N >
Master Latch f f T
Transputer Reset ;t ‘r * ; .
Event
T800 T800 T800
slave 0 slave 1 slave n
GND Errorin Error Errorin Error|-#{Errorin Error
{transputer links not shown) _I

Figure 6.6: Error handling in a multi-transputer system

— e

INMOS CORP 7= 9‘7«/7—57 10E D l ya02L88 pO033LL 3 I !

73

7 Memory

The IMS T800 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each inter-
nal memory access takes one processor cycle ProcClockOut (page 75). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address space.

IMS T800 memory is byte addressed, with words afigned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered 0. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory
begins at #80000070; this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLoc0 for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSavelLoc
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended
features such as block moves and floating point operations.

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for
ROM based code.

INMOS CORP T°- 4#9-17-5/

74

- |
106 » | vaoauss ooo33n? s fi

3

IMS T800 engineering data

hi Machine Map

lo

Reset Inst |

[Memory configuration

tad oy 1,

Reserved for
Extended Functions

EregintSavelLoc

STATUSIntSaveloc

CregintSaveloc

BregintSaveloc

AregintSaveloc

IptrintSaveloc

WdesclIntSaveloc

TPtrLoct

TPtrLocO

Event

Link 3 input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output

Link 2 Output

Link 1 Output

Link 0 Output

Byte address

#TFFFFFFE
H#TFFFFFF8
#7FFFFF6C
#0

#80001000

#80000070
#8000006C ~
#80000048
#80000044
#80000040
#8000003C
#80000038
#80000034
#80000030
#8000002C
#80000028
#80000024
#80000020
#8000001C
#80000018
#80000014
#80000010
#8000000C
#80000008
#80000004

MemStart

#80000000 j

Word offsets

- Start of external memory -
MemStart #1C

(Base of memory)

#0400

#08
#07
#06
#05
#04
#03
#02
#01
#00

Occam Map

Event

Link 3 Input

Link 2 Input

Link 1_Input

Link 0 Input

Link 3 Output

Link 2 OQutput

Link 1 OQutput

Link 0 Output

Figure 7.1: IMS T800 memory map

These locations are used as auxiliary processor registers and should not be maniputated by the user.
Like processor registers, their contents may be useful for implementing debugging tools (Analyse,

page 71). For details see The Transputer Instruction Set - A Compiler Writers' Guide.

on

INMOS CORP 7-44. /7.6, 10E D I 480288 0pp3318 7 I .
) 75

8 External memory interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 13 internal configurations which can be selected by a single pin connection (page 84). If none are
suitable the user can configure the interface to specific requirements, as shown in page 85.

8.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockin. lts period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockin Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering appendix).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (0.5«TPCLPCL), regardless of mark/space

ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should)
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on

whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are

falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best

and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge

to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew

timing table 8.4.

8.2 Tstates
The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.
T2 Address hold time after address valid strobe.
T3 Read cycle tristate or write cycle data setup.

T4 Extendable data setup time.

T5 Read or write data.

T6 Data hoid.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read siow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next Tt to coincide with
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (page 85).

nnos CORP T-4#9- s7-5/7 10e » B usoeuas oopazia s

76 3 IMS T800 engineering data

Table 8.1: ProcClockOut

SYMBOL PARAMETER MIN NOM | MAX | UNITS | NOTE

TPCLPCL | ProcClockOut period a-1 a a+1 ns 1

TPCHPCL | ProcClockOut pulse width high b-2.5 b b+2.5 ns 2

TPCLPCH | ProcClockOut pulse width low c ns 3

Tm ProcCiockOut half cycle b-0.5 b b+0.5 ns 2

TPCstab ProcClockQut stability 4 %o 4
Notes

1 ais TDCLDCL/PLLx.
2 b is 0.5+«TPCLPCL (half the processor clock period).
3 ¢ is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

TPCLPCH TPCHPCL

TPCLPCL

Figure 8.1: IMS T800 ProcClockOut timing

8.3 Internal access

During an internal memory access cycle the external memory interface bus MemAD2-31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotR{D1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 71).

ProcClockOut m
MemnotWrDO >\ Write / Read Read X
MemnotRfD1 :>/ X
Memap2-31)< Address X Address X Address X

Figure 8.2: IMS T800 bus activity for internal memory cycle

INMOS CORP 7 - ¥9-/7-5/ 10t »] usozuas poo3zao s §

8 External memory interface 77

8.4 MemAD2-31

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins MemAD2-31. They are normally output only during
Tstates T1 and T2, and should be latched during this time. Byte addressing is carried out internally by the
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes
notMemWrBO0-3.

The data bus is 32 bits wide. It uses MemAD2-31 for the top 30 bits and MemnotRfD1 and MemnotWrD(0
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must
be valid when the transputer reads it at the end of T5. Data may be removed any time during T8, but must
be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T3 and removed at the end of T6. If T6 is extended to force the
next cycle Tmx (page 77) to start on a rising edge of ProcClockOut, data will be valid during this time also.

8.5 MemnotWrD0

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2-31.

8.6 MemnotRfD1

During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

8.7 notMemRd

For a read cycle the read strobe notMemRd is low during T4 and T5. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates T4 and TS. Further extension
may be obtained by inserting wait states at the end of T4.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

8.8 notMemS0-4

To facilitate control of different types of memory and devices, the EMI is provided with five sfrobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

notMemS0 is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.)

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no fater
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 91). If notMemS1 is configured to be zero it will never go low.

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become

INMOS CORP T -¥#9- 17 -5/ L0E D Iqaueaa& 0oo3say ? I
78 3 IMS T800 engineering data

active only when wait states are inserted. If one of these strobes is configured to zero it will never go high.
Figure 8.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

Table 8.2; Read

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TaZdV Address tristate to data valid 0 ns

TdVRdH | Data setup before read 20 ns

TRdAHdX Data hold after read 0 ns

TSOLRAL | notMemS0 before start of read a-2 a a+2 ns 1
TSOHRdH | End of read from end of notMemS0 -1 1 ns

TRJLRdH | Read period b b+6 ns 2

Notes

1 ais total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twalt+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
any number of periods Tm in length.

Tstate | 11 | T2 | T3 | Te | 15 |16 | T1 |

ProcClockOut __/1
Tmx

<
MemnotWrDO >"ﬁ h <<<<<<<<< (Data))—(
MemnotRD1 > NRKLLLLLLLLKKK pata >
Memap2-31 > Address IKLLLLLLLLLKLK ata >

TaZdV —p
TaVSOL l—— TdVRdH -1 TRAHIX
4——P{TS0LaX

< TSOLRdL TRALRdH
Y/
notMemRd

- 4—TSO0HRdH

v

—p

TSOLSOH >
TN

_

TsoHs1H (9)

notMemSo0
©E) DrsoLsiL —»

(_:2TSOLS1H

notMemS1
(ALE)

/Af/‘

Figure 8.3: IMS T800 external read cycle: static memory

i
INMOS CORP 7 - 49-/7-5/ 10e b] vaoausa poo3zaz 9 i

8 External memory interface 79

Tstate | Tt } T2 | Tv3 | T4 | T5 | Te | T1 |

ProcClockOut /

< Tmx

> 7\
MemnotWrDO Data

MemnotRfD1 >_‘/ N <<<<<<<<< < Data > ><
MemaD2-31)—K__ Address MLLLLLLLLLKLK oata y

TaZdV—p» TdVRdH

X

TRdHdX

TavsoL 4—>’<—h TS0LaX
TSOLRAL TRALRAH
<
notMemRd TSOHRAH
TSOLSOH |«
TN
notMemS0 N\
RAS
(RAS) (DrsoLsiL —pla— TSOHS1H @)
() TS0LS1H e
notMemS1 N\
(ALE) ©) TsoLS2H e
@TSOLszL:L TSOHS2H
notMemS2
AMUX
(AMUX) (@) TsoLs3H e
() TsoLs3L Ts0Hs3H (D
notMemS3
CAS
(©A39) @)TSOLS4H e
@)TSOLS4L le— TS0HS4H (2)
notMemS4

(Wait state)

Figure 8.4: IMS T800 external read cycle: dynamic memory

.,.._...._._..._.,...,‘....,..,...q.,..

INHOS CORP 7= 4£7-/7- 5/ L0E D luauagaa 0003323 0 I

80 3 IMS T800 engineering data
Table 8.3: IMS T800 strobe timing
SYMBOL @ PARAMETER MIN | NOM | MAX | UNITS | NOTE
TavSoL Address setup before notMemS0 a ns 1
TS0LaX Address hold after notMemS0 b ns 2
TSOLSOH notMemS0 pulse width low c c+6 ns 3
TSOLSIL 1 | notMemS1 from notMemS0 0 2 ns
TSOLS1H | 5 | notMemS1 end from notMemS0 d d+6 ns 4,6
TSOHSTH | 9 | notMemS1 end from notMemS0 end e-1 e+d ns 5.6
TSOLS2L | 2 | notMemS2 delayed after notMemS0 f-1 f+4 ns 7
TSOLS2H | 6 | notMemS2 end from notMemS0 c+4 c+8 ns 3
TSOHS2H | 10 | notMemS2 end from notMemS0 end 0 2 ns
TSOLS3L | 3 | notMemS3 delayed after notMemS0 f-1 f+3 ns 7
TSOLS3H | 7 | notMemS3 end from notMemS0 c+4 c+8 ns 3
TSOHS3H | 11 | notMemS3 end from notMemS0 end 0 2 ns
TSOLS4L | 4 | notMemS4 delayed after notMemS0 -1 - f+2 ns 7
TSOLS4H | 8 | notMemS4 end from notMemS0 c+4 c+8 ns 3
TSOHS4H | 12 | notMemS4 end from notMemS0 end 0 2 ns
Tmx Complete external memory cycle g 8
Notes

1 ais T1 where T1 can be from one to four periods Tm in length.
2 b is T2 where T2 can be from one to four periods Tm in length.

3 cis total of T2+T3+T4+Twait+T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twait may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.
5 e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 g is one complete external memory cycle comprising the total of T1+T2+T3+T4+Twait+T5+T6 where T1, T2,
T3, T4, T5 can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twait may be zero or any number of periods Tm in length.

notMemS1 | I notMemS1 | I

notMemS2 notMemS2 | |

Tstate |T1]|T2|T3|T4|T5|T6|T1| Tstate |T1|T2{T3|T4|W |W [T5|T6|T1|

No wait states Nait states inserted

Figure 8.5: IMS T800 effect of wait states on strobes

INMOS CORP T- 49-/7-5/ 10E D I 4ya02LAA 000332y 2 I

8 External memory interface 81

Table 8.4: Strobe SO to ProcClockOut skew

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TPCHSOH | Strobe rising from ProcClockOut rising 0 3 ns
TPCLSOH | Strobe rising from ProcClockOut falling 1 4 ns
TPCHSOL | Strobe falling from ProcClockOut rising -3 0 ns
TPCLSOL | Strobe falling from ProcClockOut falling -1 2 ns
ProcClockOut
TPCHSOH TPCHSOL TPCLSOH TPCLSOL
notMemS0

Figure 8.6: IMS T800 skew of notMemS0 to ProcClockOut

8.9 notMemWrB0-3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrB0 addresses the least significant byte.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrB0-3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra petiods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

Table 8.5: Write

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TdVWrH Data setup before write d ns 1,5
TWrHdX Data hold after write a ns 1,2
TSOLWIL | notMemSO0 before start of early write b-3 b+2 ns 1,3

notMemS0 before start of late write c-3 c+2 ns 1,4
TSOHWrH | End of write from end of notMemS0 -2 2 ns 1
TWrLWrH | Early write pulse width d d+6 ns 1,5

Late write pulse width e e+6 ns 1,6

Notes

1 Timing is for all write strobes notMemWrB0-3.

2 ais T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

4 cis total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

5 d is total of T3+T4+Twalit+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twait
may be zero or any number of periods Tm in length.

6 e is fotal of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
zero or any number of periods Tm in length.

INMOS CORP T-¢9./7-%57/ ~10E D 4802LA& 0003325 4 | ¢

82 * 3 IMS T800 engineering data
Tstate | 11 | T2 | T8 | T4 | T5 | 16 | Tt |
ProcClockOut __/W_/ﬂ
» Tmx >

MemnotWrDO >—\ Data

MemnotRiD1 >

MemAD2-31 >—< Address >

N,

Z
& 7N 7N 7\

<
Data) adll
Data >‘<
>

TaVSOL |4—» |4 TWrHdX
TdVWrH
TSoLaX [——p
TSOLWrL <—:E TWrLWrH >
/
notMemWrB0-B3 /|
(early write)
< TSOLWrL TWrLWrH >
Y/
notMemWrB0-B3
(late write) —>{4— TSOHWIH _
> TSOLSOH > i
- —— |
ngéMemso N_ /| :
(CE) @TSOLS1L —be— TSOHS!H@
TSOLS1H (4
N
notMemS1 N\
(ALE)

s

Figure 8.7: IMS T800 external write cycle

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.

INMOS CORP T=49-/7-5/ 10E D f veo2t88 ooo3zes . M

83

External memory interface

8

CapPlus
Clockin _._ .
(5 MHz) | CapMinus
LinkOIn
100K : —notMemWrB3
—notMemWrB2
Link0Out GND IMS —notMemWrB1
e]
RM T800 [—notMemWrBO
Link1in - —notMemRd
Link10ut H_ As Linko —notMemS3
. —notMemS2
Link2In —notMemsS1
Link20ut ——M p——| | notMemSo0
RM]
. As Link2 Column [N/Row/Column
Link30ut address /] address
MemConfig latch multiplexer |
e ~ Q N\ m v~
o oo o o o on o (=] (=)
g ccg < < °2al |<| |<| |=
E EEE E £ EEE E E £
2 222 CJ] © S 0] ° °
=l \=== 2 = s=sLJ=LJd=ll=

Figure 8.8: IMS T800 application

INMOS

CORP 7 - '7‘7_/7,5/ woe » B usoewes ooo3ze? 8 B

84 3 IMS T800 engineering data

8.10 MemConfig

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes fow; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

8.10.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockin during the internal scan period
of 144 Clockln periods. MemnotWrD0, MemnotRfD1 and MemAD2-32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockin
periods and stays low until the end of the scan. If one of these lines is connected to MemContfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce this
default configuration. Note that only 13 of the possible configurations are valid.

Table 8.6: IMS T800 internal configuration coding

Duration of each Tstate Strobe Write | Refresh | Cycle | Extra
periods Tm coefficient cycle | interval | time | cycles
Clockin | Proc
Pin T1{ T2 T3 T4 T5 716|st s2 s3 s4| type | cycles | cycles e
MemnotWrDO | 1 1 1 1 1 113 {1 3 5| late 72 3 2
MemnotRfD1 | 1 2 1 1 1 213 1 2 7| late 72 4 3
MemAD2 1 2 1 1 2 3|3 1 2 7| late 72 5 4
MemAD3 2 3 1 i1 2 3(3 1 3 8/ late 72 6 5
MemAD4 1 1 1 1 1 13 1 2 3 |-early 72 3 2
MemAD5 1 i 2 1 2 1|5 1 2 3 |ealy 72 4 3
MemADG6 2 1 2 1+ 3 1}l6 1 2 3| early 72 5 4
MemAD7 2 2 2 { 3 217 1 3 4] ealy 72 6 5
MemAD8 1 1 1 1 1 1 (3 1 2 3| eary — 3 2
MemAD9 1 1 2 1 2 113 2 5 9] early — 4 3
MemAD10 2 2 2 2 4 213 2 3 8 late 72 7 6
MemAD11 3 3 3 3 3 3|3 2 4 13| lae 72 9 8
MemAD31 4 4 4 4 4 4)31 30 30 18] late 72 12 11
Table 8.7: IMS T800 internal configuration description
Pin Configuration
MemnotWrDO0 | Dynamic RAM in 3 processor cycles
MemnotRfD1 | Dynamic RAM in 4 processor cycles
MemAD2 Dynamic RAM in 5 processor cycles
MemAD3 Dynamic RAM in 6 cycles
MemAD4 Multiplexed address dynamic RAM in 3 processor cycles
MemADS5 Multiplexed address dynamic RAM in 4 processor cycles
MemAD6 Multiplexed address dynamic RAM in 5 processor cycles
MemAD7 Multiplexed address dynamic RAM in 6 processor cycles
MemADS8 Fast static RAM in 3 processor cycles
MemAD9 Static RAM in 4 cycles with wait generator
MemAD10 General purpose configuration in 7 processor cycles
MemAD11 General purpose configuration in 9 processor cycles
MemAD31 General purpose configuration in 12 processor cycles

INMOS CORP T - ¥#7-/7-5/ LOE D l 4802688 0003328 O i

8 External memory interface 85

Tstate |1]2|3]4]5|6]1]2[3]4 5] 6[1]2 Tstate | 1]2,2] 3|4] 5] 6,6]1 |2, 2] 3|45
notMemS0 " | [| L notMemso0 | [|
notMemS1 ~ | 3¢ N L notMemsS1 | a0 1
notMemS2 ~ 1]] | [notMems2 ™ 1] [1
notMemS3 3 | notMemsS3 2 L | L
notMemS4 _ | _ _§5 _ _ _ _ _ __ __ notMemS4 _ | _ _ 7 _ _ L o e e
notMemRd . L_| notMemRd L1 |-
notMemWr late || | notMemwr late || L

MemConfig=MemnotWrD0 MemConfig=MemnotR{D1
Tstate |11 [2,2.2 [3]4]5,5]6,6 612 Tstate |11 |22 |3,3] 4[5,5, 5[6,6]1 1

notMemS0 l f notMemSO0] I
notMemS1 | 30 [notMemS1— 1 7 [

notMemS2 1 | ,—'_ notMemS2 _TL____'_—
notMemS3 '3_|_,— notMemS3 —U
—1

notMemS4 _ _ | _ _ _ 8_ _ __ _ _ . notMemS4 4

notMemRd] | notMemRd —|_r—°—"‘
notMemWr late L1 notMemWr oo [

MemConfig=MemAD3 MemConfig=MemAD7

Figure 8.9: IMS T800 internal configuration

8.10.2 External configuration

If MemConfig is held low until MemnotWrDQ goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 36 successive external read cycles, using the default EMI con-
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 8.8, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemContig pin is the inverse of this.

MemContig is typically connected via an inverter to MemnotWrD0. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus fines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2-4 delayed by maximum; refresh interval
72 periods of Clockin; refresh enabled; late write.

The external memory configuration table 8.8 shows the contribution of each memory address to the 13 con-
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.

INMoS CORP T -4F-717-%57 10e D> | 4a02ess 0003329 1 N

86 © 3 IMS T800 engineering data

Internal configuration External configuration
64 periods Periods of Clockin»{16 periodsl Read at | Read at

Delay

1
of Clockln lot Clockin |7FFFFF6C{7FFFFF70
olofo 1 1 56 6|6
246802/8024 < <
MemnotWrDO // | // |
MemnotRfD1 I I

MemAD2 I W/ A
MemAD3 R 777,

v A v v v \

MemAD31 |

e HF——

1 Internal configuration: MemConfig connected to MemAD2.
2 External configuration: MemConfig connected to inverse of MemAD3.

Figure 8.10: IMS T800 internal configuration scan

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2-4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 77.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample
external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 75).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProeClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted.

INMOS CORP T -49- /7-5/ 10E b l 4802L48 0003330 8 i '

8 External memory interface 87
Tstate |1[22[3,9] 45 6,6,E]1] 2, 2|3 Tstate | 1[23,3[4[www| 5]t |2]3,3
notMemSo0 | f] notMemS0 | [|
notMemS1 ~ | 8] notMemSt _{ _ _o__ __ _ _
notMems2 3 1] notMems2™ [2| [L
notMems3 i1l [T] notMemS3 7 |
notMems4 4 | | notMemsS4 6 L1
notMemRd L notMemRd ——l__‘—
notMemWr m_J_L notMemWrm
OMemwait —~ "~ """ - - - —-—- @OMemwait ___ [| T
@MemWait —————————————— @MemWait __J_—l*r
Example 1 Example 2
Tstate |1]2]3,3] 4|www|5|6 6 € 1]2 Tstate |12 2|3 3| qww|s5|6,6,€|1]2
notMemSo0 j I l notMemSo0 l [|
notMems1 "1 L notMemsi L1f L
notMems2 0 ' notMemS2 7 L
notMemsS3 —" 9 . notMemS3 _S—L_,_
notMemS4 ~ . 5 | [notMemsS4 3 | [
notMemRd _—l__j'__ notMemRd l [
notMemwr fate | [notMemWr eay L [
@MemWait] | @ MemWait I l
@Memwait ___ [@ Memwait [1
Example 3 Example 4
0 No wait states inserted.
1 One wait state inserted.
2 Two wait states inserted.
3 Three wait states inserted.

Figure 8.11: IMS T800 external configuration

INMoS CORP T =4#7-/7-5/ 10E D B se020se 000333 DI

88

3 IMS T800 engineering data

Internal configuration External configuration Delay
Address 2 = = 2 2 E e i e

~ S N IL't S = [~ S
MemnotWrD0 _| LT | — L_—
MemnotriD1 _[|LZA A | WA |\ WA || A \A A e d |\ vea——-
MemAD2 A\ pza 1A 22 || pA \vzA |72 vd | vzzd-——
MemAD3 _A|zzA A |22 || VA | vzA |72 . vk | vZd———

v v v v

memans1 _[WA\WA\VA \ WA 74 | WA\ vd |\ vZzZd——-
memcontig®] UL Tl —

notMemRd

L

/L] LI

e

NOOHBWN=

®

>l

®

MemContig connected to inverse of MemnotWrDO.

Configuration field 1; T1 configured for 2 periods Tm.

Configuration field 2; T2 configured for 3 periods Tm.

Configuration field 10; most significant bit of notMemS4 configured high.
Configuration field 11; refresh interval configured for 36 periods Clockin.
Configuration field 12; refresh enabled.
Configuration field 13; early write cycle.

b ——sfeste
’|® ® 6 ©

Figure 8.12: IMS T800 external configuration scan

INMOS CORP [-¥#9-77-57

8 External memory interface

10t » P usocues odo3zza 1 |

89

Table 8.8: IMS T800 external configuration coding

Scan MemAD Example diagram
cycle address Field Function 1 2 3 4
1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit cjo01{o0 0
3 7FFFFF74 2 T2 least significant bit 1 0} 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFFa8 6 T6 most significant bit 0 0 0 0
13 7FFFFFOC 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAQ 7 0 0 0 0
15 7FFFFFA4 7 4 4 0 0 0|0
16 7FFFFFA8 7 1 0 0 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 ! 13 0 0 0 1
21 7FFFFFBC 8 00| O 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0|0
25 7FFFFFCC 9 i3 4 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 | notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEQ 10 il I 1 1 0 0
31 7FFFFFE4 10 0 0 0 0
32 7FFFFFES 10 | notMemS4 most significant bit 0 0|0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit || - - - -
35 7FFFFFF4 12 | Refresh Enable - - -
36 7FFFFFF8 13 | Late Write 0 0

Table 8.9: IMS T800 memory refresh configuration coding

Refresh Interval Fiefd 11 Complete
interval in us encoding cycle (mS)
18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockin and Clockin frequency is 5MHz:

Interval = 18 « 200 = 3600ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

INMOS CORP 7 - 47 -/7 -5/ 10e p [vaozeas 0003333 3 W

90 , 3 IMS T800 engineering data

Table 8.10: Memory configuration

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TMCVRdH | Memory configuration data setup 20 ns
TRAHMCX | Memory configuration data hold 0 ns
TSOLRdH | notMemSo0 to configuration data read a a+6 ns 1

Notes

1 ais 16 periods Tm.

Tstate | T1 | T2 | 713 | T4 | 715 | 716 | T1 |
Tm TTTTETTTTITTTTTITTINT T TITITT11

Memnotwrbo SLLLLLLLL ™,
MemnotRID1 LK atp)

MemAD2-31 LKLt >

notMemSO0 t
TSOLRdH

notMemRd

|

TMCVRdH
TRAHMCX

LD,

MemConfig

Figure 8.13: IMS T800 external configuration read cycle timing

8.11 notMemRf

The IMS T800 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

‘1 When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemR¢§ remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2-11 give
the refresh address. MemAD12-30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMem$S0-4 with timing as for a normal external cycle, but notMemRd and
notMemWrB0-3 remain high. MemWait operates normally during refresh cycles.

INMoS CORP 7 - ¥2-7/7.5/ 1oe » B usozuas ooo3say s B

8 External memory interface 91
Table 8.11: Memory refresh
SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TRfLRfH | Refresh puise width low a a+6 ns 1
TRaVSOL | Refresh address setup before notMemS0 b ns 2
TRfLSOL | Refresh indicator setup before notMemS0 b ns 2
Notes
1 ais total Tmx+(2 periods Tm).
2 b is total T1+(2 periods Tm) where T1 can be from one to four periods Tm in length.
tstate | 16 1 R Rl ml ml Bl wl sl sl nl
normal cycle
MemAD2-31 X X Address X Data X
MemAD2-11 X ><Refresh Address \
notMemS0 / /
TRaVSOL
TRfLSOL
TR{LRfH j
notMemRf
—
MemnotWrDO) N
Y
MemnotRfD1 \
D ¢ ~<
MemAD12-30
— -
MemAD31 N\
Figure 8.14: IMS T800 refresh cycle timing
8.12 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled near to, but
independent of, the failing edge of ProcClockOut, and should not change state in this region. By convention,
notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay should be
such as to take the strobe low an even number of periods Tm after the start of T1, to coincide with a rising
edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles.

If the start of TS5 would coincide with a falling edge of ProcClockOut an exira wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.

10E D IHBDEEBB 0003335 7 l

INMOS CORP 7 -¥7-17-5
92 3 IMS T800 engineering data
Table 8.12: Memory wait
SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TPCHWIH | Wait setup -(a)+3 ns 1,4
TPCHWILL | Wait hold b+3 ns 234
TWHLWtH | Delay before re-assertion of Wait 2 Tm
Notes
1 ais 0.5 periods Tm.
2 bis 1.5 periods Tm.
3 If wait period exceeds refresh interval, refresh cycles will be lost.
4 Wait timing is independent of falling edge of ProcClockOut.
Tstate | 2 I3l o | . wil 5] 1wl T |

ProcClockOut
TPCHWIL

TPCHWIH
MemWait A S S
TWILWH
MemADO0-31 Address Data Address

notMemRd \ . /
Tstate | B | ™ | @ | _.w | w | ew | T | T6

ProcClockOut

MemWait

L

Tstate I 13 | T4 | T4 ' W

ProcClockOut

MemWait

777777 o

Figure 8.15: IMS T800 memory wait timing

nmos corp T- 4#9-/7-5/ 10 » | veo2uss 0003336 4 i

8 External memory interface 93

8.13 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removai of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for the
end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends longer
than one refresh interval (Memory Refresh Configuration Coding table, page 85), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA aliows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockin before Reset. The circuit should be designed t
ensure correct operation if Reset could interrupt a normal DMA cycle. .

Table 8.13: Memory request

SYMBOL PARAMETER MIN NOM | MAX | UNITS | NOTE
TMRHMGH | Memory request response time 4 6 Tm 1
TMRLMGL | Memory request end response time 2 4 Tm :
TADZMGH | Bus tristate before memory granted 1 Tm !
TMGLADV | Bus active after end of memory granted 1 Tm :
Notes

1 These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRILRfH)+(6 periods Tm).

T6
ProcClockOut
MemReq 5 51
TMRHMGH

MemGranted

MemnotWrDO TADZMGH TMGLADV l::
MemnotRfD1 >>

MemAD2-31 4 // AN

Figure 8.16: IMS T800 memory request timing

INMOS CORP T - ¥49-77-57 1LO0E D l 4802688 0003337 O l |

94 3 IMS T800 engineering data

/. /£
MemReq | / l__m

MemGranted

Reset —1 I
Configuration // ID l [IE lD |R I I?l

sequence 7] 7/

D Pre- and post-configuration delays (figure 6.3)
I Internal configuration sequence.

E External configuration sequence.

R Initial refresh sequence.

B Bootstrap sequence.

Figure 8.17: IMS T800 DMA sequence at reset

MemReq __ /77 AN
External Memory H Read or Wiite H{ Refresh |——————{ Read or Write H

Interface cycles

MemGranted /—_—

MemnotR{D1 \ / (
MemnotWrDO N V4
MemAD2-31 d N

Figure 8.18: IMS T800 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq W/ 2/ \ m

Internal Memory Cycles

External Memory 11 12{1314] 1518 1112|1314 5 |16
Interface activity —"L__EM! cycle EM! cycle

MemGranted / \ /___
MemnotWrDO
MemnotRfD1 > >

MemAD2-31

Figure 8.19: IMS T800 operation of MemReq, MemGranted with external, internal memory cycles

INMOS CORP T -4¥9 -/7.5/ 10E D I yaoekLas Opp33aa 2 I

- 95

9 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external fink channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored untit it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 53. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 9.1: Event

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns

Notes

1 ais TPCLPCL {2 periods Tm).

EventReq

EventAck

Figure 9.1: IMS T800 event timing

INMos CORP T- ¥F- /7-57 10e b W vsozees ooo3zza v |

3

96

10 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a fink interface on one transputer to a link interface on the other
transputer Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

Link performance is improved over previous transputers by allowing an acknowledge packet to be sent before
the data packet has been fully received. This overlapped acknowledge technique is fully compatible with all
other INMOS transputer links.

The IMS T800 links support the standard INMOS communication speed of 10 Mbits per second. In addition
they can be used at 5 or 20 Mbits per second. Links are not synchronised with Clockin or ProcClockOut and
are insensitive to their phases. Thus links from independently clocked systems may communicate, providing
only that the clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If.so. their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, Link0OSpecial and Link123Special. The link 0 speed can be set
independently. Table 10.1 shows uni-directional and bi-directional data rates in Kbytes/second for each link
speed; LinknSpecial is to be read as Link0Special when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 10.1: Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special | Mbits/sec Uni Bi
0 0 10 910 1250
0 1 5 450 670
1 0 10 910 1250
1 1 20 1740 2350

_JIH‘HIOI1I2|3|4|5|6|7|L, IH|L

Data | | Ack |

Figure 10.1: IMS T800 link data and acknowledge packets

s

T-449-17-5/ 10e » B usozees ooo3zuo o fl

INMOS CORP
10 Links 97
Table 10.2: Link
SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TJQr LinkQut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkin rise time 20 ns
TJDf Linkin fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew | Variation in TJQJD 20 Mbits/s 3 ns 1
10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1
CLiZ Linkin capacitance @ f=1MHz 7 pF
CLL LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms
Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90% — — — — ===

LinkOut

Figure 10.2: IMS T800 link timing

15y =M == — =

LinkOut

Latest TJQID |€—

Earliest TJQJD

1.5V - = — —>§<_._ —
Linkin /
|-

TJBskew —P

o A s 2 p

Figure 10.3: IMS T800 buffered link timing

INMOS CORP 7—477/7-5/ 10E D lHBDEbB& 0003341 al

98 3 IMS T800 engineering data

Transputer family device A

LinkOut > Linkin

Linkin -4 LinkOut

Transputer family device B

Figure 10.4: Links directly connected

Transputer family device A
- AM Zo =100 ohms
LinkQut ————])} Linkin

Linkin T [——C—3— LinkOut

Zo =100 ohms AM

Transputer‘family device B

Figure 10.5: Links connected by transmission line

Transputer family device A

LinkOut { > p——Linkin
butfers
Linkin | <|, LinkOut

Transputer family device B

Figure 10.6: Links connected by buffers

INMOS CORP T - 47~ /7.57 10e b B ve02uss 0on3zuz o |}

99
11 Electrical specifications
1.1 DC electrical characteristics
Table 11.1: Absolute maximum ratings
SYMBOL PARAMETER MIN MAX UNITS | NOTE
VCC DC supply voltage 0 7.0 \ 1,2,3
Vi, VO Voltage on input and output pins -0.5 VCC+0.5 \ 1,2,3
i input current +25 mA 4
OSCT Qutput short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 w

Notes
1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electricai
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND,

4 The input current applies fo any input or output pin and applies when the voltage on the pin is between GND

and VCC.
Table 11.2: Operating conditions
SYMBOL PARAMETER MIN MAX UNITS | NOTE
vCC DC supply voltage 4.75 5.25 \% 1
Vi, VO Input or output voitage 0 VCC v 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range 0 70 °C 3

Notes
1 Ali voltages are with respect to GND.
2 Excursions beyond the supplies are permitted but not recommended; see DC characleristics.

- 3 Air flow rate 400 linear f/min transverse air flow.

nos CORP T = 49-77-57 1oe » B usoanes ooo3zuz b

100 3 IMS T800 engineering data

Table 11.3: DC characteristics

SYMBOL PARAMETER MIN MAX UNITS | NOTE
VIH High level input voitage 2.0 VCC+0.5 v 1,2
ViL Low leve! input voltage -0.5 0.8 \ 1,2
i Input current @ GND<VI<VCC +10 uA 1,2
VOH Output high voltage @ IOH=2mA VCC-1 \' 1,2
VOL Output low voltage @ I0L=4mA 04 Vv 1.2
10S Output short circuit current @ GND<VO<VCC 50 mA 1,2,4
75 mA 1,25
10z Tristate output current @ GND<VO<VCC +10 uA 1,2
PD Power dissipation 1.2 w 2,36
CIN Input capacitance @ f=1MHz 7 pF
COZ Qutput capacitance @ f=1MHz 10 pF
Notes

1 All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and 0°C<TA<70°C. Input clock frequency = 5MHz.
3 Power dissipation varies with output loading and program execution.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

6 Power dissipation for processor operating at 20MHz.

11.2 Equivalent circuits

vVCC
At |
Load for: R1 R2 |Equivalent load:
Output Link outputs | 1k96 | 47k |1 Schottky TTL input
Other outputs { 970R 24k | 2 Schottky TTL inputs
30pF I Diodes are 1N916

GND

Figure 11.1: Load circuit for AC measurements

nnos corp 7 - ¥7-/7-5/ 1oe » | usoeeas oopazvy s

11 Electrical specifications 101
vceC
Test point 1K2
Output under test l-
30pF
GND I
Figure 11.2: Tristate load circuit for AC measurements
11.3 AC timing characteristics
Table 11.4: Input, output edges
SYMBOL PARAMETER MIN ' MAX UNITS | NOTE
TOr Input rising edges 2 20 ns 1,2
TDf Input falling edges 2 20 ns 1,2
TQr Output rising edges : 25 ns 1
TQf Output falling edges 15 ns 1
TSO0LaHZ | Address high to tristate a a+6 ns 3
TSOLalZ | Address low to tristate a a+b ns 3
Notes

1 Non-link pins; see section on links.
2 Allinputs except Clockin; see section on Clockin.

3 ais T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrD0, MemnotRfD1, MemAD2-31.

90% — ===
10% — — ——
TOf

90% — ~ — =
10% . .
TQf

Figure 11.4: IMS T800 tristate timing relative to notMemS0

™,

7 - ¥7-/7-57 10 b W vanaeas ooo3sus o |

INMOS CORP
102 3 _ IMS T800 engineering data
30 30+ Rise time
Time L Time |
ns Rise time ns
20_/ 2071 Fall time
Fa“ ﬁme /
10 - 10
/] /Skew
rT T rrrT T rr 1 1 71 @
40 60 80 100 40 60 80 100
Load Capacitance pF Load Capacitance pF
Link EMI
Notes Figure 11.5: Typical rise/fall times

1 Skew is measured between notMemS0 with a standard load (2 Schottky TTL inputs and 30pF) and
notMemS0 with a load of 2 Schottky TTL inputs and varying capacitance.

1.4 Power rating

Internal power dissipation P,y of tran
Pyt is substantially independent of t

Total power dissipation Pp of the chip is

sputer and peripheral chips depends on VCC, as shown in figure 11.6.-
emperature,

Pp = Piyr + Pro

where Pjo is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature T of the chip is

T]=TA+0JA *PD

where T, is the external ambient temperature in °C and §J,4 is the junction-to-ambient thermal resistance in
°C/W. 8.J 4 for each package is given in the Packaging Specifications section.

800

700 —

Power —

PINT 500
mW

500

\

T800B-25.0
T8008B-22.5
T8008-20.0
T8008B-17.5

4.4

T
4.6

) T T { 1 1 1 1 ¥ 1 T
48 50 52 54 58
VCC Volts

—

Figure 11.6: IMS T800 internal power dissipation vs VCC

INMOS CORP 7= 49-17- S/ ."lDEMD I 4802688 0003346 1 I

11 Electrical specifications

103

650
Power 600 ~
PD - +
MW 550 — +
N +
500 <
1 T T T T 1T T17m T 17T 17T 17717
15 20 25 30
Processor frequency MHz

Figure 11.7: IMS T800 typical power dissipation with processor speed

INMOS CORP 7= ##./7-%57 10E D |} 4802688 0003347

104

cl N

12 Package specifications

12.1 84 pin grid array package

Out ASpecial

IMS T800
84 Pin Grid Array
Top View

Speed |Analyse| Mem
Selectt AD31

2
] :";:a
b [om
& NTNTATA
e]

<>

‘
*

J Mem Mem
AD28 | AD24

Mem Mem Mem Mem Mem Mem Mem Mem
K AD26 | AD21 | AD20 | AD18| AD15| AD14}| AD11| AD10

*
*

* * * ‘ * * ‘ * not
Clockin Do_Not Link0 Link Link Link | Event | Mem Mem
o o 7
* * * * * * * not
Mem Mem Mem
B

e

Mem Mem Mem Mem t
AD16 | AD12 | AD8 | AD4 R“f‘[’”

1 2 3 4 5 6 7 8 9 10
Do . Proc Link .
A Link Link Link Link | Event Mem
vt":-; special| 1%k | 123 | Yo" f outt | 2 | Ack | NP | wait

*

not not
Mem Mem
WrB2 A WrB0

not

Mem
AD2

Mem Mem
AD9 AD7

J

Figure 12.1: IMS T800 84 pin grid array package pinout

INMOS CORP™ ~T-4#9- /7-57 10e p W venaess ooo3zus s 0

12 Package specifications 105

index M7—>|E,<— (10987654321\
010]0.0101010]000,
i3

bl

0]0]0]01010]0]0J00)
OOOOEEEOO®
OOO® 0100,
« | O0® 0100

0J0]0) 0]00)
01010 POO
| QOOOEOOOO®
=R 28 84 £0.9]0/016101610100)
) G!Rp@@®@®@@@qj

_
Pt BN 0 0 P PN

Figure 12.2: 84 pin grid array package dimensions

® —p

>‘

ReeITIOMMOO WX

e

Table 12.1: 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOL NOM TOL Notes
A 26.924 +0.254 1.060 +0.010
B 17.019 +0.127 0.670 +0.005
C 2.456 +0.278 0.097 +0.011
D 4.572 +0.127 0.180 40,005
E 3.302 +0.127 0.130 +0.005
F 0.457 +0.025 0.018 +0.001 | Pin diameter
G 1.143 +0.127 0.045 +0.005 | Flange diameter
K 22.860 +0.127 0.900 +0.005
L 2.540 +0.127 0.100 +0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 12.2: 84 pin grid array package junction to ambient thermal resistance

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
6JA At 400 linear ft/min transverse air flow 35 °C/wW

