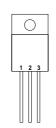


IP137A SERIES IP337 SERIES IP337A SERIES

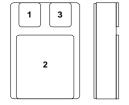

IP137 SERIES LM137 SERIES LM137A SERIES

1.5 AMP **NEGATIVE ADJUSTABLE VOLTAGE REGULATOR**

Pin 1 - ADJ. Pin $2 - V_{IN}$

Pin 3 – V_{OUT} Case - V_{IN}

G Package - (TO-257AA)



Pin 1 - ADJ. Pin 2 – V_{IN} Pin 3 – V_{OUT}

IG Package - (TO-257AA) (Isolated)

FEATURES

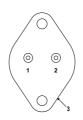

- OUTPUT VOLTAGE RANGE OF: 1.25 TO 40V FOR STANDARD VERSION 1.25 TO 50V FOR -HV VERSION
- 1% OUTPUT VOLTAGE TOLERANCE
- 0.3% LOAD REGULATION
- 0.01%/V LINE REGULATION
- COMPLETE SERIES OF PROTECTIONS:
 - CURRENT LIMITING
 - THERMAL SHUTDOWN
 - SOA CONTROL

Pin 1 – ADJ. Pin $2 - V_{IN}$

Pin 3 – V_{OUT}


SMD1 (TO276AB)

Pin 1 - ADJ. Pin 2 - V_{OUT} Pin $3 - V_{IN}$


SMD05 (TO-276AA)

CERAMIC SURFACE MOUNT CERAMIC SURFACE MOUNT

Pins 4.5 – ADJ. Pins 6,7,8,9,10,11,12,13 - V_{OUT} Pins $15,16,17,18,1,2 - V_{IN}$

LCC4 CERAMIC SURFACE MOUNT K Package - TO-3 (TO-204AA)

Pin 1 – ADJ. Pin 2 – V_{OUT}

Case - V_{IN}

Pin 1 – ADJ.

Pin 2 – V_{OUT}

Case – V_{IN} R Package - TO-66

(TO-213AA)

Pin 1 – ADJ.

Pin $2 - V_{IN}$

Pin 3 – V_{OUT} Case - VIN

T Package - TO-220

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{I-O}}$	Input - Output Differential Voltage	Standard	40V
		HV Series	50V
I _O	Output Current		Internally limited
P_{D}	Power Dissipation		Internally limited
T _i	Operating Junction Temperature Range		See Order Information Table
T _{stg}	Storage Temperature		-65 to 150°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

IP337 SERIES IP337A SERIES

IP137 SERIES LM137 SERIES IP137A SERIES LM137A SERIES

						IP137A , IP137AHV LM137A , LM137AHV			IP137 , IP137HV LM137 , LM137HV			
Parameter		Test Conditions				Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		I _{OUT} = 10mA				-1.238	-1.25	-1.262	-1.225	-1.25	-1.275	V
/	Reference Voltage	I _{OUT} = 10mA to I _{MAX}										
V _{REF}		$V_{IN} - V_{OUT} = 3V \text{ to } V_{MAX}$				-1.220	-1.25	-1.280	-1.200	-1.250	-1.300	V
		$P \le P_{MAX}$		$T_J = -$	55 to 150°C							
ΔV_{OUT}	Line Regulation ¹	$V_{IN} - V_{OUT} =$	3V to	V_{MAX}			0.005	0.010		0.010	0.020	%/V
ΔI_{OUT}	Line Regulation	$T_{J} = -55 \text{ to } 150^{\circ}\text{C}$				0.010	0.030		0.020	0.050	70/ V	
		$I_{OUT} = 10 \text{mA to } I_{MAX}$ $V_{OUT} \le 5 \text{V}$				5	25		15	25	mV	
ΔV_{OUT}	Load Regulation ¹	$V_{OUT} \ge 5V$				0.1	0.5		0.3	0.5	%	
ΔI_{OUT}	Load Negulation	$I_{OUT} = 10 \text{mA to } I_{MAX}$ $V_{OUT} \le 5$			$V_{OUT} \le 5V$		10	50		20	50	mV
		$T_J = -55 \text{ to } 150^{\circ}\text{C}$ $V_{OUT} \ge 5V$				0.2	1		0.3	1	%	
	Thermal Regulation	t _p = 10ms			T _A = 25°C		0.002	0.020		0.002	0.02	%/W
		V _{OUT} = -10V f = 120Hz		$C_{ADJ} = 0$ $C_{ADJ} = 10\mu F$ $T_{J} = -55 \text{ to } 150^{\circ}\text{C}$		60	66			60		dB
	Ripple Rejection					70	80		66	77		dB
							80					ub
I _{ADJ}	Adjust Pin Current	$T_{\rm J} = -55$ to 15	0°C				65	100		65	100	μΑ
				$OUT = 10$ mA to I_{MAX}			0.2	2		0.5	5	
ΔI_{ADJ}	Adjust Pin Current	$T_{J} = -55$			$I - V_{OUT} = 3V \text{ to } 40V$		1.0	5		2	5	μΑ
	Change	to 150°C			= 3V to 50V		2.0	6		3	6	μΑ
				(HV SERIES)			2.0	O		3	O	
I _{MIN}	Minimum Load	T _{.1} = -55 to 150°C		V _{IN} –	$V_{IN} - V_{OUT} \le 40V $ 2.5		5		2.5	5	mΛ	
	Current	1] = -33 to 13	0 0	V _{IN} –	$V_{OUT} \le 10V$		1.2	3		1.2	3	- mA
	Current Limit		$V_{IN} - V_{OUT} \le 15$		V _{OUT} ≤ 15V	1.5	2.2	3.2	1.5	2.2	3.2	
		T. = -55 to 15	0°C	$V_{IN} - V_{OUT} = 40V$		0.24	0.4	1	0.24	0.4] _^
I _{CL}		$T_{\rm J} = -55 \text{ to } 150^{\circ}\text{C}$		$V_{IN} - V_{OUT} = 50V$		0.2	0.4	0.8	0.2	0.4	0.8	Α
			(HV SERIES)		0.4	0.0	0.2	0.4	0.0			
ΔV_{OUT}	Temperature	T _{.1} = -55 to 15	0°C				0.6	1.5		0.6		%
ΔTEMP	Stability	1] = -33 10 13	0 0									
ΔV_{OUT}	Long Term Stability	T _A = +125°C				0.3	1		0.3	1	%	
ΔΤΙΜΕ	Long Term Stability	t = 1000 Hrs			0.5	'		0.5	'	/0		
e _n	RMS Output Noise	f = 10 Hz to 10 kHz				0.003			0.003		%	
	(% of V _{OUT})	T _A = 25°C			0.000			0.000		/0		
$R_{\theta JC}$	Thermal Resistance	K Package					2.3	3		2.3	3	
1,enc	Junction to Case	R Package					5	7		5	7	°C/W
	Juniolion to Case	G Package					3	5		3	5] 5, **
		LCC4 Package						13			13	

¹⁾ Regulation is measured at constant junction temperature, using pulse testing at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured at a point $\frac{1}{8}$ from the bottom of the package for the TO-3 and TO-66 packages, at the junction of the wide and narrow portion of the output lead for the SMD packages, and $^{1}/_{8}$ " below the base of the package on the output pin of the TO-257 package.

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Document Number 2831

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 2

²⁾ Test Conditions unless otherwise stated: $V_{IN} - V_{OUT} = 5V$, $I_{OUT} = 0.5A$, $P_{MAX} = 20W$, $I_{MAX} = 1.5A$, $V_{MAX} = 40V$ for standard series , 50V for HV series.

IP337 SERIES IP337A SERIES

IP137 SERIES LM137 SERIES IP137A SERIES LM137A SERIES

						IP337A IP337AHV			IP3 LM3			
Parameter		Test Conditions			Min.	Тур.	Max.	Min.	Typ.	Max.	Units	
		I _{OUT} = 10mA				-1.238	-1.25	-1.262	-1.213	-1.25	-1.287	V
,,	Reference Voltage	I _{OUT} = 10mA to I _{MAX}										
V _{REF}		$V_{IN} - V_{OUT} = 3V \text{ to } V_{MAX}$				-1.220	-1.25	-1.280	-1.200	-1.250	-1.300	V
		$P \le P_{MAX}$ $T_J = 0 \text{ to } 125^{\circ}C$										
ΔV_{OUT}	Line Regulation ¹	V _{IN} – V _{OUT} =	3V to \	V _{MAX}			0.005	0.010		0.010	0.040	%/V
ΔI_{OUT}	Line Regulation			T _J =	= 0 to 125°C		0.010	0.030		0.020	0.070	70/ V
		$I_{OUT} = 10 \text{mA to } I_{MAX}$ $V_{OUT} \le 5 \text{V}$				5	25		15	50	mV	
ΔV_{OUT}	Load Regulation ¹				V _{OUT} ≥ 5V		0.1	0.5		0.3	1	%
ΔI_{OUT}	Load Regulation	$I_{OUT} = 10$ mA to I_{MAX} $V_{OUT} \le 5$			V _{OUT} ≤ 5V		10	50		20	70	mV
		$T_J = 0 \text{ to } 125^{\circ}\text{C}$ $V_{OUT} \ge 5\text{V}$				0.2	1		0.3	1.5	%	
	Thermal Regulation	t _p = 10ms			T _A = 25°C		0.002	0.020		0.003	0.04	%/W
		V _{OUT} = 10V			$C_{ADJ} = 0$	60	66	60			dB	
	Ripple Rejection	f = 120Hz		$C_{ADJ} = 10 \mu F$ $T_{J} = 0 \text{ to } 125 ^{\circ} C$		70	80		66	77		dB
									00	,,		l ab
I _{ADJ}	Adjust Pin Current	$T_J = 0 \text{ to } 125^\circ$,C				65	100		65	100	μΑ
	Adjust Pin Current Change		Io	_{UT} = 1	0mA to I _{MAX}		0.2	2		0.5	5	
ΔI_{ADJ}		$T_J = 0$	V _{IN} –	$V_{IN} - V_{OUT} = 3V \text{ to } 40V$ $V_{IN} - V_{OUT} = 3V \text{ to } 50V$			1.0	5		2	5	μΑ
		to 125°C	V _{IN} –				2.0	6		3	6	μΑ
				(HV S	ERIES)		2.0	O		3	O .	
I _{MIN}	Minimum Load	$T_{\rm J} = 0 \text{ to } 125^{\circ}$	V _{IN} – V		$V_{OUT} \le 40V$		2.5	5		2.5	10	mA
	Current	11 = 0 10 123 0		V _{IN} –	$V_{OUT} \le 10V$		1.2	3		1	6	
				V _{IN} –	$V_{OUT} \le 15V$	1.5	2.2	3.5	1.5	2.2	3.5	
I _{CL}	Current Limit	$T_{\rm J} = 0 \text{ to } 125^{\circ}$	V _{IN} -		$V_{OUT} = 40V$	0.24	0.4	1	0.15	0.4		A
l ICL		1 J = 0 to 125 C		$V_{IN} - V_{OUT} = 50V$		0.2	0.4	0.8	0.1 0.4	0.4	0.8] ^
				(HV S	SERIES)	0.2	0.4	0.6	0.1	0.4 0.	0.0	
ΔV_{OUT}	Temperature	$T_1 = 0 \text{ to } 125^\circ$	°C				0.6	1.5		0.6		%
	Stability	1] = 0 10 123 0			0.0	1.0		0.0		/0		
ΔV_{OUT}	Long Term Stability	t = 1000 Hrs				0.3	1		0.3	1	%	
ΔΤΙΜΕ		1 10001110					0.0	•		0.0		/ /
e _n	RMS Output Noise	f = 10 Hz to 10 kHz			0.003			0.003		%		
	(% of V _{OUT})	$T_A = 25^{\circ}C$										
$R_{\theta JC}$	Thermal Resistance	K Package					2.3	3		2.3	3	
	Junction to Case	T Package					4	5		4		°C/W
		LCC4 Package						13			13	

¹⁾ Regulation is measured at constant junction temperature, using pulse testing at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured at a point $^{1}/_{8}$ " from the bottom of the package for the TO-3 and TO-66 packages, at the junction of the wide and narrow portion of the output lead for the SMD packages, and 1/8" below the base of the package on the output pin of the TO-257 package.

 $V_{IN} - V_{OUT} = 5V$, $I_{OUT} = 0.5A$, $P_{MAX} = 20W$, $I_{MAX} = 1.5A$

 $V_{MAX} = 40V$ for standard series , 50V for HV series.

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

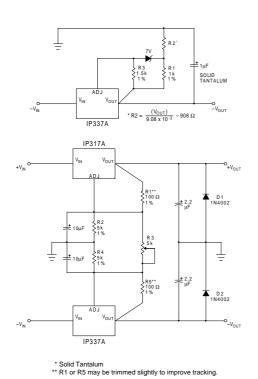
Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Document Number 2831

Issue 2

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

²⁾ Test Conditions unless otherwise stated:

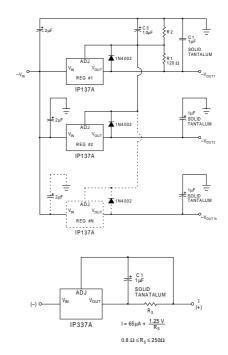

IP137 SERIES IP137A SERIES IP337 SERIES IP337A SERIES

IP137 SERIES LM137 SERIES IP137A SERIES LM137A SERIES

APPLICATIONS INFORMATION

High Stability Regulator

The output stability, load regulation, line regulation, thermal regulation, temperature drift, long term drift, and noise, can be improved by a factor of 6.6 over the standard regulator configuration. This assumes a zener has 20PPM/°C maximum drift and about 10 times lower noise than the regulator.



Dual Tracking Supply

Multiple Tracking Regulators

In the application shown below, regulator #2 to "N" will track regulator #1 to within ± 24 mV initially, and to ± 60 mV over all load, line, and temperature conditions.

If any regulator output is shorted to ground, all other outputs will drop to -2V. Load regulation of regulators 2 to "N" will be improved by $V_{\rm OUT}$ / 1.25V compared to a standard regulator, so regulator #1 should be the one which has the lowest load current.

Current Regulator

Order Information

Part Number	IG-Pack G-Pack (TO257)	SMD1	SMD05	LCC4	K–Pack (TO3)	R-Pack (TO66)	T–Pack (TO220)	Temp. Range
LM137	✓	√	✓	√	✓	✓		-55 to +150°C
LM137HV	✓	✓	✓	√	✓	✓		"
LM137A	✓	√	✓	✓	✓	✓		"
LM137AHV	✓	√	✓	✓	✓	✓		"
IP137	✓	✓	✓	✓	✓	✓		"
IP137HV	✓	√	✓	✓	√	✓		"
IP137A	✓	√	✓	✓	✓	✓		"
IP137AHV	✓	✓	✓	✓	✓	✓		"
LM337					✓		✓	0 to 125°C
LM337HV					√		✓	"
IP337					✓		✓	"
IP337HV					✓		✓	"
IP337A					√		✓	"
IP337AHV					√		√	"

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 2831

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 2