
IRFM540

Pin 1 – Drain

MECHANICAL DATA Dimensions in mm (inches)

Pin 2 - Source

N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS

V _{DSS}	100V
I _{D(cont)}	18A
R _{DS(on)}	0.092 Ω

FEATURES

- HERMETICALLY SEALED TO254 METAL PACKAGE
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- SCREENING OPTIONS AVAILABLE
- ALL LEADS ISOLATED FROM CASE

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^{\circ}C$ unless otherwise stated)

Pin 3 – Gate

V _{GS}	Gate – Source Voltage	±20V	
I _D	Continuous Drain Current @ T _{case} = 25°C	18A	
I _D	Continuous Drain Current @ T _{case} = 100°C	12A	
I _{DM}	Pulsed Drain Current	72A	
P _D	Power Dissipation @ T _{case} = 25°C	50W	
	Linear Derating Factor	ТВА	
T _J , T _{stg}	Operating and Storage Temperature Range	–55 to 150°C	
$R_{ ext{ heta}JC}$	Thermal Resistance Junction to Case	TBA °C/W max.	
$R_{ hetaJA}$	Thermal Resistance Junction to Ambient	TBA°C/W max.	

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc.Telephone +44(0)1455 556565.Fax +44(0)1455 552612.E-mail: sales@semelab.co.ukWebsite: http://www.semelab.co.uk

IRFM540

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	STATIC ELECTRICAL RATINGS	•				•
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$ $I_D = 1mA$	100			V
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C		0.1		V/°C
ΔT_{J}	Breakdown Voltage	I _D = 1mA		0.1		
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = 10V$ $I_D = 12A$			0.092	Ω
	Resistance	$V_{GS} = 10V$ $I_D = 18A$			0.11	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2		4	V
9 _{fs}	Forward Transconductance	$V_{DS} \ge 15V$ $I_{DS} = 12A$	9.1			S(Ω)
1	Zero Gate Voltage Drain Current	$V_{GS} = 0$ $V_{DS} = 0.8BV_{DSS}$			25	μΑ
IDSS		T _J = 125°C			250	
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V			100	nA
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$			-100	
	DYNAMIC CHARACTERISTICS	•	1			
C _{iss}	Input Capacitance	$V_{GS} = 0$		1660		
C _{oss}	Output Capacitance	$V_{\rm DS} = 25V$		550		pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		120		
	Total Gate Charge	$V_{GS} = 10V$ $I_D = 18A$	20		50	59 nC
		$V_{DS} = 0.5 B V_{DSS}$	30		59	
Q _{gs}	Gate – Source Charge	I _D = 18A	2.4		12	
Q _{gd}	Gate – Drain ("Miller") Charge	V _{DS} = 0.5BV _{DSS} 12			30.7	nC
t _{d(on)}	Turn-On Delay Time	V _ 50V			21	ns
t _r	Rise Time	$V_{DD} = 50V$			145	
t _{d(off)}	Turn–Off Delay Time	$I_D = 18A$			64	
t _f	Fall Time	$R_{G} = 9.1\Omega$			105	
	SOURCE - DRAIN DIODE CHARAC	TERISTICS				•
I _S	Continuous Source Current				18	A
I _{SM}	Pulse Source Current				73	
	Diode Forward Voltage	$I_{\rm S} = 18$ A $T_{\rm J} = 25^{\circ}$ C			1 5	V
		$V_{GS} = 0$			1.5	
t _{rr}	Reverse Recovery Time	$I_S = 18A$ $T_J = 25^{\circ}C$			400	ns
Q _{rr}	Reverse Recovery Charge	$d_i / d_t \le 100 A/\mu s V_{DD} \le 50 V$			2.4	μC
	PACKAGE CHARACTERISTICS		•			
L _D	Internal Drain Inductance (fr	(from 6mm down drain lead pad to centre of die)		TBA		
L _S	Internal Source Inductance (from 6mm do	own source lead to centre of source bond pad)		TBA		– nH

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.