Features

- HIGH-DENSITY PROGRAMMABLE LOGIC
- 8000 PLD Gates
- 96 I/O Pins, Ten Dedicated Inputs
- 288 Registers
- High-Speed Global Interconnects
- Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc.
- Small Logic Block Size for Random Logic
- Security Cell Prevents Unauthorized Copying
- HIGH PERFORMANCE E²CMOS ${ }^{\circledR}$ TECHNOLOGY
- fmax $=\mathbf{8 0} \mathbf{M H z}$ Maximum Operating Frequency
- $\mathrm{fmax}=\mathbf{5 0} \mathbf{~ M H z}$ for Industrial Devices
- tpd = 15 ns Propagation Delay
- TTL Compatible Inputs and Outputs
- Electrically Erasable and Reprogrammable
- Non-Volatile E²CMOS Technology
- 100\% Tested
- IN-SYSTEM PROGRAMMABLE
- In-System Programmable ${ }^{\text {TM }}$ (ISP ${ }^{\text {TM }}$) 5-Volt Only
— Increased Manufacturing Yields, Reduced Time-toMarket, and Improved Product Quality
- Reprogram Soldered Devices for Faster Debugging
- COMBINES EASE OF USE AND THE FAST SYSTEM SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FIELD PROGRAMMABLE GATE ARRAYS
- Complete Programmable Device Can Combine Glue Logic and Structured Designs
- Four Dedicated Clock Input Pins
- Synchronous and Asynchronous Clocks
- Flexible Pin Placement
— Optimized Global Routing Pool Provides Global Interconnectivity
- ispDesignEXPERTTM - LOGIC COMPILER AND COM-

PLETE ISP DEVICE DESIGN SYSTEMS FROM HDL SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING

- Superior Quality of Results
- Tightly Integrated with Leading CAE Vendor Tools
- Productivity Enhancing Timing Analyzer, Explore Tools, Timing Simulator and ispANALYZER ${ }^{\text {TM }}$
- PC and UNIX Platforms

Functional Block Diagram

Description

The ispLSI 1048 is a High-Density Programmable Logic Device which contain 288 Registers, 96 Universal I/O pins, ten Dedicated Input pins, four Dedicated Clock Input pins and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 1048 features 5 -Volt in-system programming and in-system diagnostic capabilities. It is the first device which offers non-volatile reprogrammability of the logic, as well as the interconnect to provide truly reconfigurable systems.

The basic unit of logic on the ispLSI 1048 devices is the Generic Logic Block (GLB). The GLBs are labeled A0, A1 . F7 (see figure 1). There are a total of 48 GLBs in the ispLSI 1048 device. Each GLB has 18 inputs, a programmable AND/OR/XOR array, and four outputs which can be configured to be either combinatorial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any other GLB on the device.

Functional Block Diagram

Figure 1. ispLSI 1048 Functional Block Diagram

The device also has 96 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, registered input, latched input, output or bi-directional I/O pin with 3-state control. Additionally, all outputs are polarity selectable, active high or active low. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA .

Eight GLBs, 16 I/O cells, two dedicated inputs (one dedicated input in Megablock B and E) and one ORP are connected together to make a Megablock (see figure 1). The outputs of the eight GLBs are connected to a set of 16 universal I/O cells by the ORP. The ispLSI 1048 device contains six of these Megablocks.

The GRP has as its inputs the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew.

Clocks in the ispLSI 1048 device are selected using the Clock Distribution Network. Four dedicated clockpins (Y0, Y1, Y2 and Y3) are brought into the distribution network, and five clock outputs (CLK 0, CLK 1, CLK 2, IOCLK 0 and IOCLK 1) are provided to route clocks to the GLBs and I/O cells. The Clock Distribution Network can also be driven from a special clock GLB (D0 on the ispLSI 1048 device). The logic of this GLB allows the user to create an internal clock from a combination of internal signals within the device.

Specifications ispLSI 1048

Absolute Maximum Ratings 1

Supply Voltage V_{cc}................................ -0.5 to +7.0 V
Input Voltage Applied....................... -2.5 to $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$
Off-State Output Voltage Applied -2.5 to $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$
Storage Temperature \qquad -65 to $150^{\circ} \mathrm{C}$

Case Temp. with Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

Max. Junction Temp. (T_{J}) with Power Applied ... $150^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

DC Recommended Operating Conditions

SYMBOL	PARAMETER			MIN.	MAX.	UNITS
VCC	Supply Voltage	Commercia	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4.75	5.25	V
		Industrial	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4.5	5.5	
VIL	Input Low Voltage			0	0.8	V
VIH	Input High Voltage			2.0	$\mathrm{Vcc}+1$	V

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	MAXIMUM 1	UNITS	TEST CONDITIONS
\mathbf{C}_{1}	Dedicated Input Capacitance	8	pf	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=2.0 \mathrm{~V}$
\mathbf{C}_{2}	I/O and Clock Capacitance	10	pf	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}, \mathrm{V}_{\mathrm{Y}}=2.0 \mathrm{~V}$

1. Guaranteed but not 100% tested.

Data Retention Specifications

PARAMETER	MINIMUM	MAXIMUM	UNITS
Data Retention	20	-	Years
Erase/Reprogram Cycles	10000	-	Cycles

Switching Test Conditions

Input Pulse Levels	GND to 3.0 V
Input Rise and Fall Time	$\leq 3 \mathrm{~ns} 10 \%$ to 90%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See figure 2

3 -state levels are measured 0.5 V from steady-state active level.

Output Load Conditions (see figure 2)

Test Condition		R1	R2	CL
A		470Ω	390Ω	35 pF
B	Active High	∞	390Ω	35 pF
	Active Low	470Ω	390Ω	35 pF
C	Active High to Z at $V_{\text {OH }}-0.5 \mathrm{~V}$	∞	390Ω	5 pF
	Active Low to Z at $V_{\text {OL }}+0.5 \mathrm{~V}$	470Ω	390Ω	5 pF

Figure 2. Test Load

${ }^{*} C_{L}$ includes Test Fixture and Probe Capacitance.

DC Electrical Characteristics

Over Recommended Operating Conditions

SYMBOL	PARAMETER	CONDITION		MIN.	TYP. 3	MAX.	UNITS
VOL	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		-	-	0.4	V
VOH	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		2.4	-	-	V
IIL	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)		-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-	-	10	$\mu \mathrm{A}$
IIL-isp	isp Input Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (MAX.)		-	-	-150	$\mu \mathrm{A}$
IIL-PU	I/O Active Pull-Up Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$		-	-	-150	$\mu \mathrm{A}$
IOS ${ }^{1}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$		-	-	-200	mA
ICC ${ }^{2,4}$	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{HH}}=3.0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{TOGGLE}}=1 \mathrm{MHz} \end{aligned}$	Commercial	-	165	235	mA
			Industrial	-	165	260	mA

1. One output at a time for a maximum duration of one second. $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ was selected to avoid test problems by tester ground degradation. Characterized but not 100\% tested.
2. Measured using twelve 16 -bit counters.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. Maximum $I_{c c}$ varies widely with specific device configuration and operating frequency. Refer to the Power Consumption section of this datasheet and Thermal Management section of this Lattice Semiconductor Data Book or CD-ROM to estimate maximum $I_{c c}$.

External Timing Parameters
Over Recommended Operating Conditions

PARAMETER	TEST ${ }^{5}$ COND.	$\#^{2}$	DESCRIPTION ${ }^{1}$	-80		-70		-50		UNITS
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd1	A	1	Data Propagation Delay, 4PT bypass, ORP bypass	-	15	-	18	-	24	ns
tpd2	A	2	Data Propagation Delay, Worst Case Path	-	20	-	23	-	30.7	ns
fmax (Int.)	A	3	Clock Frequency with Internal Feedback ${ }^{3}$	80	-	71.4	-	53.6	-	MHz
fmax (Ext.)	-	4	Clock Frequency with External Feedback $\left(\frac{1}{\text { tsu2 }+ \text { tco1 }}\right)$	50	-	41.7		31.3	-	MHz
fmax (Tog.)	-	5	Clock Frequency, Max Toggle ${ }^{4}$	100	-	83	-	71.4	-	MHz
tsu1	-	6	GLB Reg. Setup Time before Clock, 4PT bypass	7	-	9	-	12	-	ns
tcos	A	7	GLB Reg. Clock to Output Delay, ORP bypass	-	10	-	12		16	ns
th1	-	8	GLB Reg. Hold Time after Clock, 4 PT bypass	0	-	0		0	-	ns
tsu2	-	9	GLB Reg. Setup Time before Clock	10		12	-	16	-	ns
tco2	-	10	GLB Reg. Clock to Output Delay	-	12	-	14	-	18.7	ns
th2	-	11	GLB Reg. Hold Time after Clock	0	-	0	-	0	-	ns
tr1	A	12	Ext. Reset Pin to Output Delay	-	17	-	17	-	22.7	ns
trw1	-	13	Ext. Reset Pulse Duration	10	-	10	-	13	-	ns
ten	B	14	Input to Output Enable		18	-	20	-	26.7	ns
tdis	C	15	Input to Output Disable	-	18	-	20	-	26.7	ns
twh	-	16	Ext. Sync. Clock Pulse Duration, High	5	-	6	-	7	-	ns
twl	-	17	Ext. Sync. Clock Pulse Duration, Low	5	-	6	-	7	-	ns
tsu5	-	18	I/O Reg. Setup Time before Ext. Sync. Clock (Y2, Y3)	2	-	2	-	2.7	-	ns
th5	-	19	I/O Reg. Hold Time after Ext. Sync. Clock (Y2, Y3)	6.5	-	6.5	-	8.7	-	ns

1. Unless noted otherwise, all parameters use a GRP load of 4 GLBs, 20 PTXOR path, ORP and Y0 clock.
2. Refer to Timing Model in this data sheet for further details.
3. Standard 16-Bit loadable counter using GRP feedback.
4. fmax (Toggle) may be less than $1 /(\mathbf{t w h}+\mathbf{t w l})$. This is to allow for a clock duty cycle of other than 50%.
5. Reference Switching Test Conditions section.

Internal Timing Parameters ${ }^{1}$

PARAMETER	\# ${ }^{2}$	DESCRIPTION	-80		-70		-50		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Inputs									
tiobp	20	I/O Register Bypass	-	2.5	-	3.0	-	4.0	ns
tiolat	21	I/O Latch Delay	-	3.3	-	4.0	-	5.3	ns
tiosu	22	I/O Register Setup Time before Clock	5.3	-	6.0	-	8.1	-	ns
tioh	23	I/O Register Hold Time after Clock	1.5	-	0.5	-	0.9	-	ns
tioco	24	I/O Register Clock to Out Delay	-	2.5	-	3.0	-	3.9	ns
tior	25	I/O Register Reset to Out Delay	-	2.9	-	3.5		4.6	ns
tdin	26	Dedicated Input Delay	-	5.0	-	6.0	-	8.0	ns
GRP									
tgrp1	27	GRP Delay, 1 GLB Load		2.1		2.5	-	3.3	ns
tgrp4	28	GRP Delay, 4 GLB Loads	-	2.5	-	3.0	-	4.0	ns
tgrp8	29	GRP Delay, 8 GLB Loads	-	3.3	-	4.0	-	5.3	ns
tgrp12	30	GRP Delay, 12 GLB Loads		4.2	-	5.0	-	6.7	ns
tgrp16	31	GRP Delay, 16 GLB Loads	-	5.0	-	6.0	-	8.0	ns
tgrp48	32	GRP Delay, 48 GLB Loads	-	13.3	-	16.0	-	21.3	ns
GLB									
t4ptbp	33	4 Product Term Bypass Path Delay (a)		5.4	-	6.5	-	8.6	ns
t1ptxor	34	1 Product Term/XOR Path Delay		6.5	-	7.0	-	9.3	ns
t20ptxor	35	20 Product Term/XOR Path Delay	-	7.6	-	7.5	-	10.0	ns
txoradj	36	XOR Adjacent Path Delay ${ }^{3}$	-	8.4	-	9.5	-	12.7	ns
tgbp	37	GLB Register Bypass Delay	-	0.8	-	1.0	-	1.3	ns
tgsu	38	GLB Register Setup Time before Clock	0.8	-	1.5	-	2.0	-	ns
tgh	39	GLB Register Hold Time after Clock	5.0	-	6.0	-	8.0	-	ns
tgco	40	GLB Register Clock to Output Delay	-	2.1	-	2.5	-	3.3	ns
tgr	41	GLB Register Reset to Output Delay	-	2.1	-	2.5	-	3.3	ns
tptre	42	GLB Product Term Reset to Register Delay	-	8.3	-	10.0	-	13.3	ns
tptoe	43	GLB Product Term Output Enable to I/O Cell Delay	-	8.8	-	9.0	-	11.9	ns
tptck	44	GLB Product Term Clock Delay	2.9	6.3	3.5	7.5	4.6	9.9	ns
ORP									
torp	45	ORP Delay	-	3.2	-	3.5	-	4.7	ns
torpbp	46	ORP Bypass Delay	-	1.3	-	1.5	-	2.0	ns

1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
3. The XOR adjacent path can only be used by hard macros.

Internal Timing Parameters ${ }^{1}$

PARAMETER	\# ${ }^{2}$	DESCRIPTION	-80		-70		-50		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Outputs									
tob	47	Output Buffer Delay	-	2.5	-	3.0	-	4.0	ns
toen	48	I/O Cell OE to Output Enabled	-	4.2	-	5.0	-	6.7	ns
todis	49	I/O Cell OE to Output Disabled	-	4.2	-	5.0	-	6.7	ns
Clocks									
tgy0	50	Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)	4.2	4.2	5.0		6.7	6.7	ns
tgy $1 / 2$	51	Clock Delay, Y1 or Y2 to Global GLB Clock Line	3.3	5.0	4.0	6.0	5.3	8.0	ns
tgcp	52	Clock Delay, Clock GLB to Global GLB Clock Line	0.8	4.2	1.0	5.0	1.3	6.6	ns
tioy2/3	53	Clock Delay, Y2 or Y3 to I/O Cell Global Clock Line	3.3	5.0	4.0	6.0	5.3	8.0	ns
tiocp	54	Clock Delay, Clock GLB to I/O Cell Global Clock Line	0.8	4.2	1.0	5.0	1.3	6.6	ns
Global Reset									
tgr	55	Global Reset to GLB and I/O Registers	-	9.2	-	8.0	-	10.6	ns

[^0]
ispLSI 1048 Timing Model

Derivations of tsu, th and tco from the Product Term Clock ${ }^{1}$

tsu = Logic + Reg su - Clock (min)
$=($ tiobp $+\mathbf{t g r p} 4+\mathbf{t} 20$ ptxor $)+(\mathbf{t g s u})-($ tiobp + tgrp $4+$ tptck $($ min $))$
$=(\# 20+\# 28+\# 35)+(\# 38)-(\# 20+\# 28+\# 44)$
$5.5 \mathrm{~ns}=(3.0+3.0+7.5)+(1.5)-(3.0+3.0+3.5)$
th $=\operatorname{Clock}(\max)+$ Reg $\mathrm{h}-$ Logic
$=(\mathbf{t i o b p}+\mathbf{t g r p} 4+\mathbf{t}$ ptck $(\max))+(\mathbf{t g h})-(\mathbf{t i o b p}+\mathbf{t g r p} 4+\mathbf{t} 20 \mathrm{ptxor})$
$=(\# 20+\# 28+\# 44)+(\# 39)-(\# 20+\# 28+\# 35)$
$6.0 \mathrm{~ns}=(3.0+3.0+7.5)+(6.0)-(3.0+3.0+7.5)$
tco $=\operatorname{Clock}(\max)+$ Reg co + Output
$=(\mathbf{t}$ tobp $+\mathbf{t g r p} 4+\mathbf{t p t c k}(\max))+(\mathbf{t g c o})+(\mathbf{t}$ orp $+\mathbf{t o b})$
$=(\# 20+\# 28+\# 44)+(\# 40)+(\# 45+\# 47)$
$22.5 \mathrm{~ns}=(3.0+3.0+7.5)+(2.5)+(3.5+3.0)$

Derivations of tsu, th and tco from the Clock GLB ${ }^{1}$

```
tsu = Logic + Reg su - Clock (min)
    \(=(\mathbf{t i o b p}+\mathbf{t g r p} 4+\mathbf{t} 20 \mathrm{ptxor})+(\mathbf{t g s u})-(\mathbf{t g y 0}(\mathrm{min})+\mathbf{t g c o}+\mathbf{t g c p}(\) min \())\)
    \(=(\# 20+\# 28+\# 35)+(\# 38)-(\# 50+\# 40+\# 52)\)
    \(6.5 \mathrm{~ns}=(3.0+3.0+7.5)+(1.5)-(5.0+2.5+1.0)\)
    th \(=\operatorname{Clock}(\) max \()+\) Reg \(\mathrm{h}-\) Logic
    \(=(\mathbf{t g y 0}(\) max \()+\mathbf{t g c o}+\mathbf{t g c p}(\) max \())+(\mathbf{t g h})-(\) tiobp \(+\mathbf{t g r p} 4+\mathbf{t} 20 \mathrm{ptxor})\)
    \(=(\# 50+\# 40+\# 52)+(\# 39)-(\# 20+\# 28+\# 35)\)
    \(5.0 \mathrm{~ns}=(5.0+2.5+5.0)+(6.0)-(3.0+3.0+7.5)\)
    tco \(=\) Clock (max) + Reg co + Output
    \(=(\boldsymbol{t g y 0}(\max )+\mathbf{t g c o}+\boldsymbol{t g c p}(\max ))+(\mathbf{t g c o})+(\mathbf{t o r p}+\mathbf{t} \mathbf{b b})\)
    \(=(\# 50+\# 40+\# 52)+(\# 40)+(\# 45+\# 47)\)
\(21.5 \mathrm{~ns}=(5.0+2.5+5.0)+(2.5)+(3.5+3.0)\)
```

1. Calculations are based upon timing specifications for the ispLSI 1048-70.

Maximum GRP Delay vs GLB Loads

0126A-48-80-isp

Power Consumption

Power consumption in the ispLSI 1048 device depends ure 3 shows the relationship between power and operaton two primary factors: the speed at which the device is ing speed. operating, and the number of Product Terms used. Fig-

Figure 3. Typical Device Power Consumption vs fmax

ICC can be estimated for the ispLSI 1048 using the following equation:
ICC = $73+(\#$ of PTs * 0.23) + (\# of nets * Max. freq * 0.010) where:
\# of PTs = Number of Product Terms used in design
\# of nets = Number of Signals used in device
Max. freq = Highest Clock Frequency to the device
The ICC estimate is based on typical conditions $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$, room temperature) and an assumption of 2 GLB loads on average exists. These values are for estimates only. Since the value of $I_{C C}$ is sensitive to operating conditions and the program in the device, the actual ICC should be verified.

Pin Description

1. Pins have dual function capability.

Pin Configuration

ispLSI 1048 120-Pin PQFP Pinout Diagram

1. Pins have dual function capability.

Specifications ispLSI 1048

Part Number Description

ispLSI 1048 Ordering Information

COMMERCIAL

Family	$\mathbf{f m a x}_{\text {(MHz) }}$	tpd (ns)	Ordering Number	Package
ispLSI	80	15	ispLSI 1048-80LQ	120-Pin PQFP
	70	18	ispLSI 1048-70LQ	120-Pin PQFP
	50	24	ispLSI 1048-50LQ	120-Pin PQFP

INDUSTRIAL

Family	$\mathbf{f m a x}_{\text {(MHz) }}$	$\mathbf{t p d}_{\text {(ns) }}$	Ordering Number	Package
ispLSI	50	24	ispLSI 1048-50LQI	120-Pin PQFP

[^0]: 1. Internal Timing Parameters are not tested and are for reference only
 2. Refer to Timing Model in this data sheet for further details.
