The documentation and process conversion measures necessary to comply with this revision shall be completed by 5 November 1997

INCH-POUND

MIL-PRF-19500/464C <u>5 August 1997</u> SUPERSEDING MIL-S-19500/464B 25 May 1994

PERFORMANCE SPECIFICATION

SEMICONDUCTOR DEVICE, TRANSISTOR, NPN, SILICON POWER TYPES 2N5685 AND 2N5686, JAN, JANTX AND JANTXV

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 <u>Scope</u>. This specification covers the performance requirements for NPN silicon, power transistors. Three levels of product assurance are provided for each device type as specified in MIL-PRF-19500.
 - 1.2 Physical dimensions. See figure 1, similar to TO-3.
 - 1.3 Maximum ratings. $T_C = +125$ °C, unless otherwise specified.

	P _T <u>1</u> / T _C = +25°C	P _T <u>1</u> T _C = +100°C	V _{CBO}	V _{CE}	V _{EB}	I _B	IC	T _J and T _{STG}	$R_{ heta JC}$
	<u>W</u>	W	V dc	V dc	V dc	A dc	A dc	<u>°C</u>	<u>°C/W</u>
N5685 N5686	300 300	171 171	60 60	60 60	5 5	15 15	50 50	-55 to +200 -55 to +200	.584 .584

 $[\]underline{1}$ / Between T_C = +25°C and T_C = +200°C linear derating factor 1.715 W/°C.

1.4 Primary electrical characteristics.

	h _{FE2}	<u>1</u> /	hFE	<u>1</u> /	V _{BE(s}	at)) <u>1</u> /	V _{CE(s}	at)1 <u>1</u> /	V _{CE(s}	sat)2 <u>1</u> /
	~-	2 V dc 5 A dc	<u> </u>	5 V dc 0 A dc	•	5 A dc .5 A dc	•	5 A dc .5 A dc	_	0 A dc 0 A dc
	Min	Max	Min	Max	<u>V</u> Min	<u>dc</u> Max	<u>V</u> Min	<u>dc</u> Max	<u>V</u> Min	<u>dc</u> Max
2N5685 2N5686	15 15	60 60	5			2.0 2.0		1.0 1.0		5.0 5.0

	C _{obo}	h _{fe}	Switching (see table I and figure 2 herein)
	$V_{CB} = 10 \text{ V dc}$ $I_E = 0$ $1 \text{ MHz} \le f \le \text{MHz}$	V _{CE} = 5 V dc I _C = 10 A dc f = 1 kHz	t _{on} t _{off}
	Min Max <u>pF</u>	Min Max	Min Max Min Max
2N5685 2N5686	1,200 1,200	15 15	1.5 3.0 1.5 3.0

^{1/} Pulsed (see 4.5.1).

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAT, 3990 East Broad Street, Columbus, OH 43216-5000, by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A

<u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

2. APPLICABLE DOCUMENTS

- 2.1 <u>General</u>. The documents listed in this section are specified in section 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements documents cited in section 3 and 4 of this specification, whether or not they are listed.
- 2.1.1 <u>Specifications</u>, <u>standards</u>, <u>and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation (see 6.2).

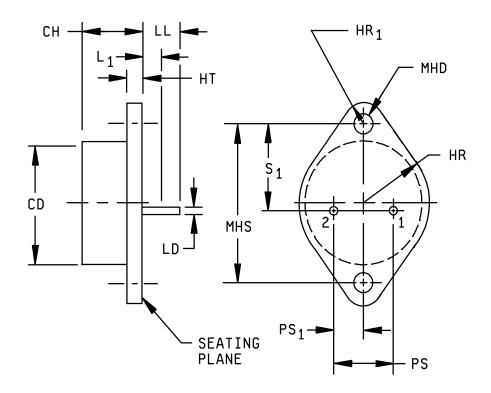
SPECIFICATION

MII ITARY

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

STANDARD

MILITARY


MIL-STD-750 - Test Methods for Semiconductor Devices.

(Unless otherwise indicated, copies of federal and military specifications, standards, and handbooks are available from the Defense Printing Service Detachment Office, Building 4D (Customer Service), 700 Robbins Avenue, Philadelphia, PA 19111-5094.)

2.2 Order of precedence. In the event of a conflict between the text of this document and the references cited herein, the text of this document shall take precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 Qualification. Devices furnished under this specification shall be products that are authorized by the qualifying activity for listing on the applicable qualified products list before contract award (see 4.2 and 6.3).
 - 3.2 Associated specification. The individual item requirements shall be in accordance with MIL-PRF-19500 and as specified herein.
- 3.3 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500.
- 3.4 <u>Interface requirements and physical dimensions</u>. The interface requirements and physical dimensions shall be as specified in MIL-PRF-19500, and figure 1 herein.
- 3.4.1 <u>Lead finish</u>. Lead finish shall be solderable in accordance with MIL-STD-750 and MIL-PRF-19500. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2).
 - 3.5 Marking. Marking shall be in accordance with MIL-PRF-19500.
- 3.5 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3, 1.4, and table I.
 - 3.6 Electrical test requirements. The electrical test requirements shall be the subgroups specified in 4.4.2 and 4.4.3.

Symbol	Inc	hes	Millime	ters	Notes
	Min	Max	Min	Max	
CH LD CD PS PS ₁ HT LL L ₁ MHD MHS HR	.250 .057 .420 .205 .060 .312 .151 1.177 .495 .131	.450 .063 .875 .440 .225 .135 .500 .050 .165 1.197 .525 .188	6.35 1.45 10.67 5.21 1.52 7.92 3.84 29.90 12.57 3.33 16.64	11.43 1.60 22.23 11.18 5.72 3.43 12.70 1.27 4.19 30.40 13.34 4.78 17.15	4, 6 3 3 4, 6 4, 6
S ₁					

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. These dimensions should be measured at points .050 inch (1.27 mm) to .055 inch (1.40 mm) below seating plane. When gauge is not used, measurement will be made at seating plane.
- Two leads.
- 5. Collector shall be electrically connected to the case.
- 6. $\,$ LD applies between L_1 and LL. Diameter is uncontrolled in L_1 .

FIGURE 1. Physical dimensions.

- 4. VERIFICATION
- 4.1 Sampling and inspection. Sampling and inspection shall be in accordance with MIL-PRF-19500 and as specified herein.
- 4.2 Classification of inspection. The inspection requirements specified herein are classified as follows:
 - a. Qualification inspection (see 4.3).
 - b. Screening (see 4.4).
 - c. Conformance inspection (see 4.5).
- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-19500.
- 4.4 <u>Screening (JANTX and JANTXV levels)</u>. Screening shall be in accordance with appendix E, table IV of MIL-PRF-19500, and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

Screen (see appendix E, table IV of MIL-PRF-19500)	Measurement
table IV of MIL-PRP-19300)	JANTX and JANTXV levels only
11	h _{FE2} and I _{CEX}
12	See 4.3.1
13	ΔI_{CEX} = 100 percent of initial value or100 μ A dc, whichever is greater;
	$\Delta h_{FE2} = 25$ percent of initial value; subgroup 2 of table I herein.

4.4.1 Power burn-in conditions. Power burn-in conditions are as follows:

 $T_{.J} = +187.5^{\circ}C \pm 12.5^{\circ}C$; $V_{CB} \ge 20 \text{ V dc}$, $T_{A} \le +100^{\circ}C$.

- 4.5 Conformance inspection. Conformance inspection shall be in accordance with MIL-PRF-19500 appendix E, table V, and table I herein.
- 4.5.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with MIL-PRF-19500, appendix E table V, and table I herein. Electrical measurements (end-points) shall be in accordance with the applicable steps of table II, herein.
- 4.5.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in MIL-PRF-19500, appendix E, table VIB (JANTX and JANTXV), and as follows. Electrical measurements (end-points) and delta requirements shall be in accordance with the applicable steps of table II herein.
 - 4.5.2.1 Group B inspection, appendix E, table VIb (JANTX and JANTXV) of MIL-PRF-19500.

<u>Subgroup</u>	Method	<u>Conditions</u>
В3	1037	2,000 cycles, V _{CE} \geq 10 V dc, P _T = 170 W, ΔT_J between cycles \geq +100°C.
	2037	11 devices, ACC = 0.
B5	3131	See 4.5.2.

4.5.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in MIL-PRF-19500, appendix E, table VII and as follows. Electrical measurements (end-points) and delta requirements shall be in accordance with the applicable steps of table II herein.

4.5.3.1 Group C inspection, appendix E, table VII of MIL-PRF-19500.

<u>Subgroup</u>	Method	<u>Conditions</u>
C2	2036	Test condition A, weight = 10 pounds, $t = 15$ s.
C6	1037	6,000 cycles, $V_{CE} \ge 10 \text{ V}$ dc, $P_T = 170 \text{ W}$, ΔT_J between cycles ≥ +100°C.

- 4.6 Method of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows.
- 4.6.1 Pulse measurements. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750.
- 4.6.2 <u>Thermal resistance</u>. Thermal resistance measurements shall be conducted in accordance with method 3131 of MIL-STD-750. The following details shall apply:
 - a. Collector current magnitude during power applications shall be 1 A dc.
 - b. Collector to emitter voltage magnitude shall be \geq 5 V dc.
 - c. Reference temperature measuring point shall be the case.
 - d. Reference point temperature shall be $+25^{\circ}\text{C} \le T_R \le +75^{\circ}\text{C}$ and recorded before the test is started.
 - e. Mounting arrangement shall be with heat sink to header.
 - f. Maximum limit shall be $R_{\theta JC}$ = .584°C/W.

TABLE I. Group A inspection.

Inspection 1/		MIL-STD-750	Symbol	Li	mit	Unit
	Method	Conditions		Min	Max	
Subgroup 1						
Visual and mechanical examination	2071					
Subgroup 2						
Breakdown voltage collector to emitter	3011	Bias condition D; I _C = 100 mA dc, pulsed (see 4.5.1)	V _(BR) CEO			
2N5685 2N5686				60 80		V dc V dc
Collector to emitter cutoff current	3041	Bias condition D	ICEO		500	μA dc
2N5685 2N5686		V _{CE} = 30 V dc V _{CE} = 40 V dc				
Collector to emitter cutoff current	3041	Bias condition A;	I _{CEX1}		500	μA dc
2N5685 2N5686		$V_{BE} = 1.5 \text{ V dc}$ $V_{CE} = 60 \text{ V dc}$				
Emitter to base cutoff current	3061	V _{CE} = 80 V dc	I _{EBO}		1	mA dc
Collector to base cutoff current	3036	Bias condition D; V _{BE} = 5 V dc, I _C = 0	I _{CBO1}			
2N5685 2N5686		Bias condition D	0201		2.0 2.0	mA dc mA dc
Base to emitter saturated	3066	$V_{CB} = 60 \text{ V dc}$ $V_{CB} = 80 \text{ V dc}$			2.0	V dc
Base to emitter non-saturated	3066	Test condition A; I _C = 25 A dc, I _B = 2.5 A dc, pulsed (see 4.5.1)	V _{BE} (sat)		2.0	V dc
Collector to emitter saturated voltage	3071	Test condition B; $I_C = 25$ A dc, $V_{CE} = 2$ A dc,	V _{BE}		1.0	V dc
Collector to emitter	3071	pulsed (see 4.5.1)	V _{CE(sat)1}		5.0	V dc
saturated voltage Forward current transfer ratio	3076	I _C = 25 A dc; I _B = 10 A dc pulsed (see 4.5.1) I _C = 50 A dc; I _B = 10 A dc, pulsed (see 4.5.1)	V _{CE(sat)2}	30		
		V _{CE} = 2 V dc; I _C = 5 A dc, pulsed (see 4.5.1)	h _{FE1}			

See footnote at end of table.

TABLE I. Group A inspection - Continued.

Inspection 1/		MIL-STD-750	Symbol	Lii	mit	Unit
	Method	Conditions		Min	Max	
Subgroup 2 - Continued						
Forward current transfer ratio	3076	V _{CE} = 2 V dc; I _C = 25 A dc, pulsed (see 4.5.1)	h _{FE2}	15	60	
Forward current transfer ratio	3076	V _{CE} = 2 V dc; I _C = 50 A dc, pulsed (see 4.5.1)	h _{FE3}	2		
Subgroup 3						
High temperature operation:		T _A = +150°C				
Collector to emitter cutoff current	3041	Bias condition A; V _{BE} = 1.5 V dc	I _{CEX2}		5	mA dc
2N5685 2N5686		V _{CE} = 60 V dc				
Low temperature operation:		V _{CE} = 80 V dc				
Forward current transfer ratio	3076	T _A = -55°C	h _{FE4}	7		
Subgroup 4		V _{CE} = 2.0 V dc; I _C = 25 A dc, pulsed (see 4.5.1)				
Pulse response	3251					
Turn-on time		Test condition A, except test circuit and pulse requirements (see figure 2 herein)			1.5	μs
Turn-off time		V _{CC} = 30 V dc; I _C = 25 A dc, I _{B1} = 2.5 A dc	t _{on}		3.0	μs
Storage time		V _{CC} = 30 V dc; I _C = 25 A dc,	toff		2.0	μs
Magnitude of common emitter small-signal short- circuit forward-current	3306	$I_{B1} = -I_{B2} = 2.5 \text{ A dc}$ $V_{CC} = 30 \text{ V dc}; I_{C} = 25 \text{ A dc},$	t _S	2.0	20	
transfer ratio		$I_{B1} = -I_{B2} = 2.5 \text{ A dc}$ $V_{CE} = 10 \text{ V dc}; I_{C} = 5 \text{ A dc},$ $f = 1 \text{ MHz}$	h _{fe}			

See footnote at end of table.

TABLE I. Group A inspection - Continued.

Inspection 1/		MIL-STD-750	Symbol	Li	mit	Unit
	Method	Conditions		Min	Max	
Subgroup 4 - Continued						
Small-signal short-circuit forward-current transfer ratio	3206	V _{CE} = 5 V dc; I _C = 10 A dc, f = 1 MHz	h _{fe}	15		
Open circuit output capacitance	3236	$V_{CB} = 10 \text{ V dc}; I_E = 0,$ 0.1 MHz \le f \le 1 MHz	C _{obo}		1,200	pF
Subgroup 5						
Safe operating area (continuous dc) Test 1	3051	T _C = +25°C; t = 1 s, 1 cycle (see figures 3 and 4)				
Test 2		$V_{CE} = 6 \text{ V dc}; I_{C} = 50 \text{ A dc}$				
Test 3		$V_{CE} = 30 \text{ V dc}; I_{C} = 10 \text{ A dc}$				
2N5686		$V_{CE} = 50 \text{ V dc}; I_{C} = 560 \text{ mA dc}$				
Safe operating area (switching)	3053	$V_{CE} = 60 \text{ V dc}; I_{C} = 640 \text{ mA dc}$				
, o,		Load condition C (unclamped inductive load) (see figure 5)				
Test 1		T _C = +25°C duty cycle ≤ 10 percent				
1000.1		$R_S = 0.1 \Omega$; $t_f = t_f \le 500 \text{ ns}$				
		t_p approximately 5 ms (vary to obtain I_C); $R_{BB1} = 10\Omega$;				
		$V_{BB1} = 20 \text{ V dc}; R_{BB2} = \infty;$				
Test 2		$\begin{array}{l} V_{BB2}=0 \text{ V; } V_{CC}=50 \text{ V dc;} \\ I_{C}=20 \text{ A dc; } L=1 \text{ mH; Sanford} \\ \text{Miller CK - 50, 50 A .002 } \Omega \text{ (or} \\ \text{equivalent)} \end{array}$				
		t_p approximately 5 ms (vary to obtain I_C); $R_{BB1} = 100 \Omega$;				
		$V_{BB1} = 10 \text{ V dc}; R_{BB2} = \infty;$ $V_{BB2} = 0 \text{ V}; V_{C} = 50 \text{ V dc};$				
		I _C = 1.5 V dc; L = 80 mH; (2 each signal transformer CH06, 6A) 0.4 Ω (or equivalent)				

See footnote at end of table.

TABLE I. Group A inspection - Continued.

Inspection 1/		MIL-STD-750	Symbol	Lir	Limit	
	Method	Conditions		Min	Max	
Subgroup 5 - Continued						
Safe operating area (switching)	3053	Clamped inductive load (see figures 6 and 7) TA = +25°C; V _{CC} = 50 V dc				
2N5685		Clamp voltage = 60 V dc				
2N5686		Clamp voltage = 80 V dc				
Electrical measurements		See table II, steps 1 and 3.				

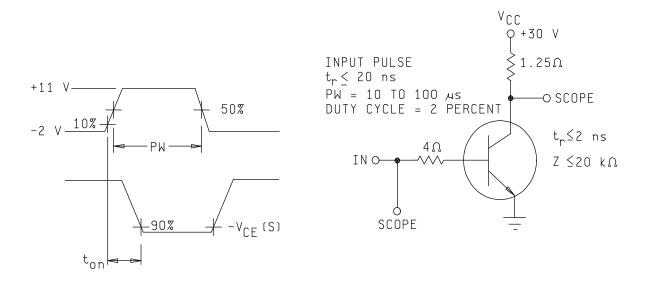
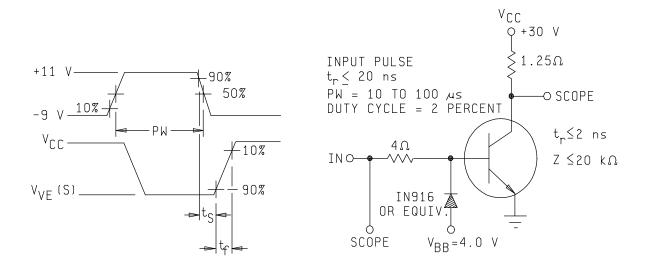

^{1/} For sampling plan, see MIL-PRF-19500.

TABLE II. Groups A, B, and C electrical end-point measurements. $\underline{1}/\underline{2}/$


Step	Inspection	MIL-STD-750		Symbol	Lir	nit	Unit
		Method	Conditions		Min	Max	
1.	Collector to emitter cutoff current	3041	Bias condition A, V _{BE} = 1.5 V dc	I _{CEX1}		500	μA dc
	2N5685 2N5686		V _{CE} = 60 V dc				
2.	Collector to emitter cutoff current	3041	Bias condition A, VBE = 1.5 V dc TA = +150°C	I _{CEX2}		5	mA dc
	2N5685 2N5686		VCE = 60 V dc				
3.	Forward-current transfer ratio	3076	V _{CE} = 2.0 V dc I _C = 25 A dc pulsed (see 4.5.1)	hFE2	15	60	
4.	Forward-current transfer ratio	3076	V _{CE} = 2.0 V dc I _C = 25 A dc pulsed (see 4.5.1)	Δh _{FE2}	± 25 pe value.	ercent of	f initial
5.	Thermal response	3131	I _C = 25 A dc,	V _{BE}			

^{1/} The electrical measurements for appendix E, table VIb (JANTX and JANTXV) of MIL-PRF-19500 are as follows:

- a. Subgroup 2, see table II herein, steps 1 and 3.
- b. Subgroup 3, see table II herein, steps 2, 4, and 5.
- c. Subgroup 6, see table II herein, steps 2 and 4.
- $\underline{\textit{2}\!/}$ The electrical measurements for appendix E, table VII of MIL-PRF-19500 are as follows:
 - a. Subgroup 2, see table II herein, steps 1 and 3.
 - b. Subgroup 3, see table II herein, steps 1 and 3.
 - c. Subgroup 6, see table II herein, steps 2, 4, and 5."

TURN-ON (t_{on}) TIME TEST CIRCUIT

TURN-ON (t_{off}) TIME TEST CIRCUIT

FIGURE 2. Switching time test circuits.

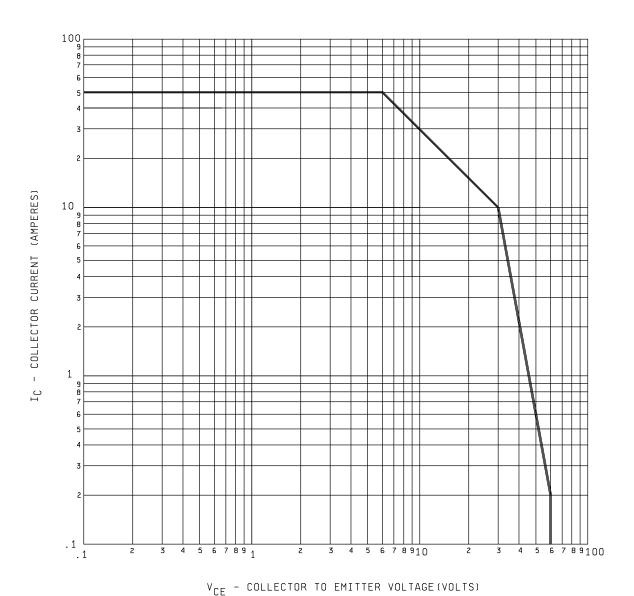
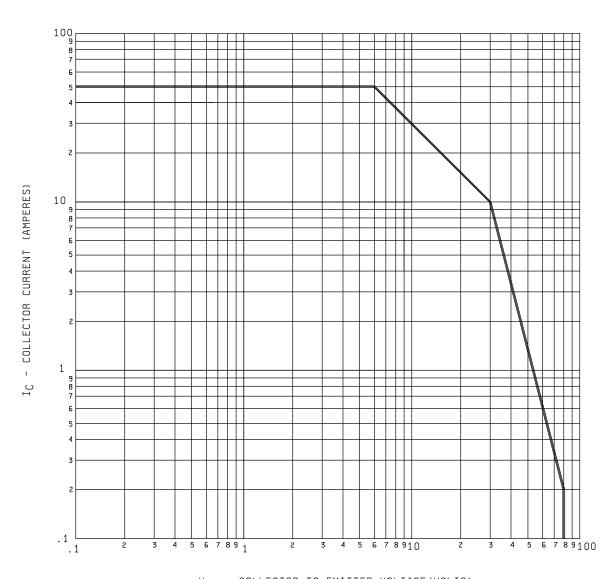
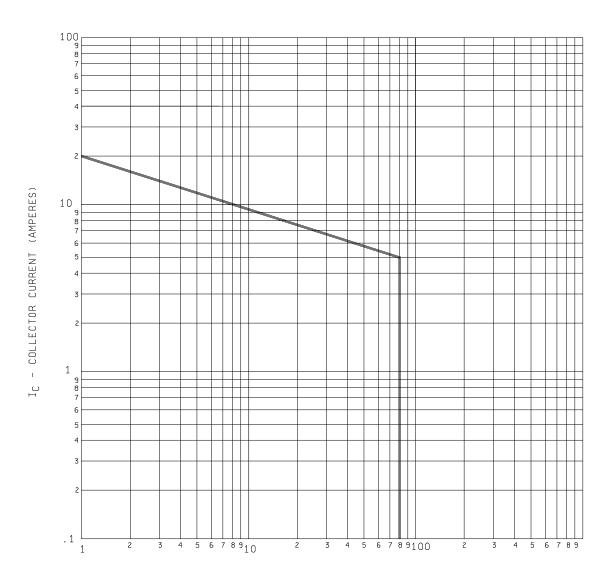




FIGURE 3. Maximum safe operating area graph continuous dc (2N5685).

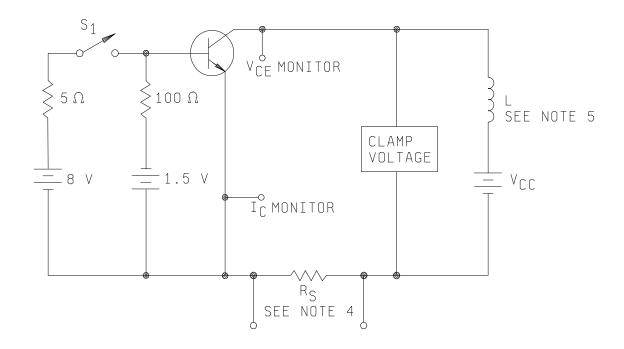

V_{CE} - COLLECTOR TO EMITTER VOLTAGE(VOLTS)

FIGURE 4. Maximum safe operating area graph continuous dc (2N5686).

L - INDUCTANCE (MILLIHENERIES)

FIGURE 5. <u>Safe operating area for switching between saturation and cutoff (unclamped inductive load)</u>.

Procedure:

- 1. With switch S1 closed, set the specified test conditions.
- Open S1. Device fails if clamp voltage not reached.
 Perform specified end-point tests.
- 4. $R_S \le 0.1\Omega$, 12 W; 1percent tolerance maximum; (noninductive)
- 5. L = 2.0 mH (2 each 1 mH.Sanford Miller CK-50, 50 A). $R = .002 \Omega$.

FIGURE 6. Clamp inductive sweep test circuit.

FIGURE 7. <u>Safe operating area for switching between</u> saturation and cutoff (clamped inductive load).

5. PACKAGING

- 5.1 <u>Packaging</u>. Packaging shall prevent mechanical damage of the devices during shipping and handling and shall not be detrimental to the device. When actual packaging of material is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Points' packaging activity within the Military Department or Defense Agency, or within the Military Departments' System Command. Packaging data retrieval is available from the managing Military Departments' or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.
 - 5.2 Marking. Unless otherwise specified (see 6.2), marking shall be in accordance with MIL-STD-129.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

- 6.1 Notes. The notes specified in MIL-PRF-19500 are applicable to this specification.
- 6.2 Acquisition requirements. See MIL- PRF-19500.
- 6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Products List QPL No.19500 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from, Defense Supply Center Columbus, ATTN: DSCC-VQE, 3990 East Broad Street, Columbus, OH 43216-5000.
- 6.4 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extent of the changes.

Custodians:

Army - CR Navy - EC Air Force - 17

(Project 5961-1829)

Preparing activity:

DLA - CC

Review activities:

Army - MI

Air Force - 13, 19, 70, 80, 85, 99

INSTRUCTIONS 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given. 2. The submitter of this form must complete blocks 4, 5, 6, and 7. 3. The preparing activity must provide a reply within 30 days from receipt of the form. NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements. I RECOMMEND A CHANGE: 1. DOCUMENT NUMBER 2. DOCUMENT DATE (YYMMDD) MIL-PRF-19500/464C 970805 3. DOCUMENT TITLE SEMICONDUCTOR DEVICE, TRANSISTOR, NPN, SILICON POWER, TYPES 2N5685 AND 2N5686, JANTX AND JANTXV 4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed.) 5. REASON FOR RECOMMENDATION 6. SUBMITTER a. NAME (Last, First, Middle initial) b. ORGANIZATION c. ADDRESS (Include Zip Code) d. TELEPHONE (Include Area Code) 7. DATE SUBMITTED (YYMMDD) (1) Commercial (2) AUTOVON (If applicable)

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

a. NAME Alan Barone

43216-5000

c. ADDRESS (Include Zip Code), Defense

3990 East Broad Street, Columbus, OH

Supply Center Columbus, ATTN: DSCC-VAT,

Defense Quality and Standardization Office

Telephone (703) 756-2340 AUTOVON 289-2340

b. TELEPHONE (Include Area Code)

(1) Commercial (614)692-0510 (2) AUTOVON

850-0510

IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT:

5203 Leesburg Pike, Suite 1403, Falls Church, VA 22041-3466