Three quadrant triacs

GENERAL DESCRIPTION

Passivated guaranteed commutation triacs in a plastic envelope suitable for surface mounting intended for use in motor control circuits or with other highly inductive loads. These devices balance the requirements of commutation performance and gate sensitivity. The "sensitive gate" E series and "logic level" D series are intended for interfacing with low power drivers, including micro controllers.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	MAX.	UNIT
$V_{\text {DRM }}$	BTA212B- BTA212B- BTA212B- Repetitive peak off-state	$\begin{aligned} & \text { 600D } \\ & \text { 600E } \\ & \text { 600F } \\ & 600 \end{aligned}$	800E 800F 800	
$\begin{aligned} & \mathrm{I}_{\mathrm{T}(\text { RMS })} \\ & \mathrm{T}_{\mathrm{SSM}} \end{aligned}$	RMS on-state current Non-repetitive peak on-state current	$\begin{aligned} & 12 \\ & 95 \end{aligned}$	$\begin{aligned} & 12 \\ & 95 \end{aligned}$	$\begin{gathered} \text { A } \\ \text { A } \end{gathered}$

PINNING - SOT404

PIN	DESCRIPTION
	main terminal 1
2	main terminal 2
3	gate
mb	main terminal 2

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

[^0]THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{R}_{\mathrm{th} j-m b}$	Thermal resistance	full cycle	-	-	1.5	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} j-a}$	junction to mounting base junctal resistance junction to ambient	half cycle in free air	-	-	2.0	K/W

STATIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$ unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.			UNIT
$I_{G T}$	Gate trigger current ${ }^{2}$	BTA212B-		...D	...D	...E	$\ldots \mathrm{F}$	
		$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V} ; \mathrm{I}_{\mathrm{T}}=0.1 \mathrm{~A}$						
		$\mathrm{T} 2+\mathrm{G}+$	-	1.0	5	10	25	mA
		T2+ G-	-	2.2	5	10	25	mA
I_{L}	Latching current	T2- G-	-	3.3	5	10	25	mA
		$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V} ; \mathrm{I}_{\mathrm{GT}}=0.1 \mathrm{~A}$						
		T2+ G+	-	6	15	25	30	mA
		T2+ G-	-	6	25	30	40	mA
		T2- G-	-	9	25	30	40	mA
I_{H}	Holding current	$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V} ; \mathrm{I}_{\mathrm{GT}}=0.1 \mathrm{~A}$	-	3.8	15	25	30	mA
			...D, E, F					
$\begin{aligned} & V_{T} \\ & V_{G T} \end{aligned}$	On-state voltage Gate trigger voltage	$\begin{aligned} & \mathrm{I}_{T}=17 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{D}}=12 \mathrm{~V} ; \mathrm{I}_{T}=0.1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{D}}=400 \mathrm{~V} ; \mathrm{I}_{\mathrm{T}}=0.1 \mathrm{~A} ; \\ & \mathrm{T}_{\mathrm{j}}=125{ }^{\circ} \mathrm{C} \end{aligned}$	-	1.3		1.6		V
			- -	0.7		1.5		V
			0.25	0.4				V
I_{D}	Off-state leakage current	$\left\{\begin{array}{l} T_{\mathrm{j}}=125 \mathrm{C} \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}(\max)} ; \\ \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{array}\right.$	-	0.1		0.5		mA

DYNAMIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.			TYP.	MAX.	UNIT
	Critical rate of rise of off-state voltage	BTA212B-	...D	...E	...F	...D		
$d V_{D} / \mathrm{dt}$		$\mathrm{V}_{\text {DM }}=67 \% \mathrm{~V}_{\text {DRM(max }}$; $\mathrm{T}_{\mathrm{i}}=110^{\circ} \mathrm{C}$; exponential waveform; gate open	20	60	70	30	-	V/us
$\mathrm{dl}_{\text {com }} / \mathrm{dt}$	Critical rate of change of commutating current		1.8	3.5	5	3	-	A/ms
$\mathrm{dl}_{\text {com }} / \mathrm{dt}$	Critical rate of change of commutating current		5	16	19	100	-	A/ms
			...D, E, F					
t_{gt}	Gate controlled turn-on time	$\begin{aligned} & \mathrm{I}_{\mathrm{TM}}=12 \mathrm{~A} ; \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM(max }} ; \\ & \mathrm{I}_{\mathrm{G}}=0.1 \mathrm{~A} ; \mathrm{dl}_{\mathrm{G}} / \mathrm{dt}=5 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$	-	-	-	2	-	us

2 Device does not trigger in the T2-, G+ quadrant.

Three quadrant triacs BTA212B series D, E and F guaranteed commutation

Fig.1. Maximum on-state dissipation, $P_{\text {tot, }}$ versus rms on-state current, $I_{T(\text { RMS })}$, where $\alpha=$ conduction angle.

Fig.2. Maximum permissible non-repetitive peak on-state current $I_{\text {TSM }}$, versus pulse width t_{p}, for sinusoidal currents, $t_{p} \leq 20 \mathrm{~ms}$.

Fig.3. Maximum permissible non-repetitive peak on-state current I ${ }_{\text {TSM }}$, versus number of cycles, for sinusoidal currents, $f=50 \mathrm{~Hz}$.

Fig.4. Maximum permissible rms current $I_{T(R M S)}$, versus mounting base temperature $T_{m b}$.

Fig.5. Maximum permissible repetitive rms on-state current $I_{T(R M S)}$, versus surge duration, for sinusoidal currents, $f=50 \mathrm{~Hz} ; T_{m b} \leq 99^{\circ} \mathrm{C}$.

Fig.6. Normalised gate trigger voltage $V_{G T}\left(T_{j}\right) / V_{G T}\left(25^{\circ} \mathrm{C}\right)$, versus junction temperature T_{j}.

Three quadrant triacs guaranteed commutation

Fig.7. Normalised gate trigger current $I_{G T}\left(T_{j}\right) / I_{G T}\left(25^{\circ} \mathrm{C}\right)$, versus junction temperature T_{j}.

Fig.8. Normalised latching current $I_{L}\left(T_{j}\right) / I_{L}\left(25^{\circ} \mathrm{C}\right)$, versus junction temperature T_{j}.

Fig.9. Normalised holding current $I_{H}\left(T_{j}\right) / I_{H}\left(25^{\circ} \mathrm{C}\right)$, versus junction temperature T_{j}.

Fig.10. Typical and maximum on-state characteristic.
 pulse width t_{p}.

Three quadrant triacs

BTA212B series D, E and F guaranteed commutation

MECHANICAL DATA

Fig.13. SOT404 : centre pin connected to mounting base.

MOUNTING INSTRUCTIONS

Dimensions in mm

Fig.14. SOT404 : minimum pad sizes for surface mounting.

Notes

1. Plastic meets UL94 V0 at 1/8".

Three quadrant triacs
BTA212B series D, E and F guaranteed commutation

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and	
operation of the device at these or at any other conditions above those given in the Characteristics sections of	
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.

Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

[^0]: 1 Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed $15 \mathrm{~A} / \mathrm{\mu s}$.

