

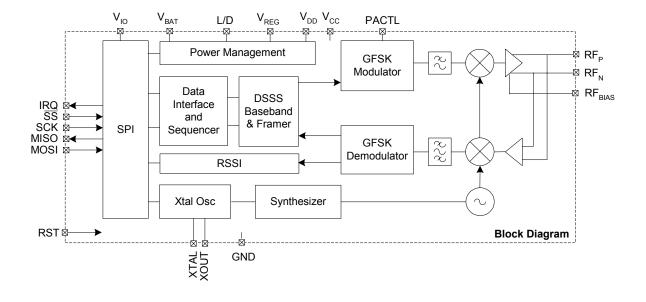
CYRF6936

WirelessUSB™ LP 2.4GHz Radio SoC

1.0 Features

- 2.4-GHz Direct Sequence Spread Spectrum (DSSS) radio transceiver
- Operates in the unlicensed worldwide Industrial, Scientific and Medical (ISM) band (2.400 GHz–2.483 GHz)
- 21mA operating current (Transmit @ –5 dBm)
- Transmit power up to +4 dBm
- Receive sensitivity up to -97 dBm
- Sleep Current <1 μA
- · Operating range: 10m+
- · DSSS data rates up to 250 kbps, GFSK data rate of 1 Mbps
- Low external component count
- · Auto Transaction Sequencer (ATS) no MCU intervention
- Framing, Length, CRC16, and Auto ACK
- · Power Management Unit (PMU) for MCU / Sensor
- Fast Startup and Fast Channel Changes
- · Separate 16-byte Transmit and Receive FIFOs
- AutoRate[™] dynamic data rate reception
- Receive Signal Strength Indication (RSSI)
- 4-MHz SPI microcontroller interface
- Battery Voltage Monitoring Circuitry
- · Serial Peripheral Interface (SPI) control while in sleep mode
- · Supports coin-cell operated applications
- Operating voltage from 1.8V to 3.6V
- Operating temperature from 0 to 70°C
- Space saving 40-pin QFN 6x6 mm package

2.0 Applications


- · Wireless Keyboards and Mice
- Wireless Gamepads
- Remote Controls
- Toys
- · VOIP and Wireless Headsets
- White Goods
- Consumer Electronics
- Home Automation
- Automatic Meter Readers
- · Personal Health & Entertainment

3.0 Applications Support

See www.cypress.com for development tools, reference designs, and application notes.

4.0 Functional Description

The CYRF6936 WirelessUSB[™] LP radio is a second generation member of Cypress's WirelessUSB Radio System-On-Chip (SoC) family. The CYRF6936 is interoperable with the first generation CYWUSB69xx devices. The CYRF6936 IC adds a range of enhanced features, including increased operating voltage range, reduced supply current in all operating modes, higher data rate options, and reduced crystal start-up, synthesizer settling and link turn-around times.

198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised May 08, 2006

5.0 Pin Descriptions

Pin #	Name	Туре	Default	Description
13	RF _N	I/O	I	Differential RF signal to/from antenna
11	RF _P	I/O	I	Differential RF signal to/from antenna
10	RF _{BIAS}	0	0	RF I/O 1.8V reference voltage
30	PACTL	I/O	0	Control signal for external PA, T/R switch, or GPIO
1	XTAL	I	I	12-MHz crystal
29	XOUT	I/O	0	Buffered 0.75, 1.5, 3, 6 or 12 MHz clock, PACTL, or GPIO
25	SCK	I	I	SPI clock
28	MISO	I/O	Z	SPI data output pin, or GPIO (in SPI 3-pin mode)
27	MOSI	I/O	I	SPI data input pin, or SDAT
24	SS	I	I	SPI enable
26	IRQ	I/O	0	Interrupt output (configurable active high or low), or GPIO
34	RST	I	I	Device reset. Internal 10k-ohm pull-down resistor. Active HIGH, typically connect via 0.1- μ F capacitor to V _{BAT}
37	L/D	0		PMU inductor/diode connection
40	V _{REG}	Pwr		PMU boosted output voltage feedback
35	V _{DD}	Pwr		Decoupling pin for 1.8V logic regulator, connect via 0.47- μF capacitor to GND
6, 8, 38	V _{BAT}	Pwr		V _{BAT} = 1.8V to 3.6V. Main supply.
3, 7, 16	V _{CC}	Pwr		V_{CC} = 2.4V to 3.6V. Typically connected to V_{REG}
33	V _{IO}	Pwr		I/O interface voltage, 1.8–3.6V
19	RESV	I		Must be connected to GND
2, 4, 5, 9, 14, 15, 18, 17, 20, 21, 22, 23, 32, 36, 39, 31	NC	NC		Recommend to connect to GND
12	GND	GND		Ground
E-PAD	GND	GND		Ground

CYRF6936 Top View*

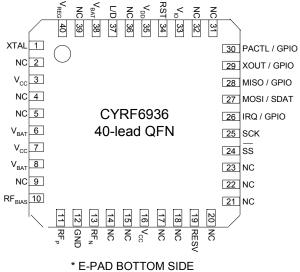


Figure 5-1. CYRF6936, 40 QFN - Top View

6.0 Functional Overview

The CYRF6936 IC provides a complete WirelessUSB SPI to antenna wireless MODEM. The SoC is designed to implement wireless device links operating in the worldwide 2.4-GHz ISM frequency band. It is intended for systems compliant with world-wide regulations covered by ETSI EN 301 489-1 V1.41, ETSI EN 300 328-1 V1.3.1 (Europe), FCC CFR 47 Part 15 (USA and Industry Canada) and TELEC ARIB_T66_March, 2003 (Japan).

The SoC contains a 2.4-GHz 1-Mbps GFSK radio transceiver, packet data buffering, packet framer, DSSS baseband controller, Received Signal Strength Indication (RSSI), and SPI interface for data transfer and device configuration.

The radio supports 98 discrete 1-MHz channels (regulations may limit the use of some of these channels in certain jurisdictions). In DSSS modes the baseband performs DSSS spreading/despreading, while in GFSK Mode (1 Mb/s - GFSK) the baseband performs Start of Frame (SOF), End of Frame (EOF) detection and CRC16 generation and checking. The baseband may also be configured to automatically transmit Acknowledge (ACK) handshake packets whenever a valid packet is received.

When in receive mode, with packet framing enabled, the device is always ready to receive data transmitted at any of the supported bit rates, except SDR, enabling the implementation of mixed-rate systems in which different devices use different data rates. This also enables the implementation of dynamic data rate systems, which use high data rates at shorter distances and/or in a low-moderate interference environment, and change to lower data rates at longer distances and/or in high interference environments.

In addition, the CYRF6936 IC has a Power Management Unit (PMU) which allows direct connection of the device to any battery voltage in the range 1.8V to 3.6V. The PMU conditions the battery voltage to provide the supply voltages required by the device, and may supply external devices.

6.1 Data Transmission Modes

The SoC supports four different data transmission modes:

- In GFSK mode, data is transmitted at 1 Mbps, without any DSSS.
- In 8DR mode, 8 bits are encoded in each DATA_CODE_ADR derived code symbol transmitted.
- In DDR mode, 2-bits are encoded in each DATA_CODE_ADR derived code symbol transmitted. (As in the CYWUSB6934 DDR mode).
- In SDR mode, 1 bit is encoded in each DATA_CODE_ADR derived code symbol transmitted. (As in the CYWUSB6934 standard modes.)

Both 64-chip and 32-chip DATA_CODE_ADR codes are supported. The four data transmission modes apply to the data after the SOP. In particular the length, data, and CRC16 are all sent in the same mode. In general, lower data rates reduces packet error rate in any given environment.

6.2 Link Layer Modes

The CYRF6936 IC device supports the following data packet framing features:

SOP – Packets begin with a 2-symbol Start of Packet (SOP) marker. This is required in GFSK and 8DR modes, but is optional in DDR mode and is not supported in SDR mode; if framing is disabled then an SOP event is inferred whenever two successive correlations are detected. The SOP_CODE_ADR code used for the SOP is different from that used for the "body" of the packet, and if desired may be a different length. SOP must be configured to be the same length on both sides of the link.

EOP – There are two options for detecting the end of a packet. If SOP is enabled, then a packet length field may be enabled. GFSK and 8DR must enable the length field. This is the first 8-bits after the SOP symbol, and is transmitted at the payload data rate. If the length field is enabled, an End of Packet (EOP) condition is inferred after reception of the number of bytes defined in the length field, plus two bytes for the CRC16 (if enabled—see below). The alternative to using the length field is to infer an EOP condition from a configurable number of successive non-correlations; this option is not available in GFSK mode and is only recommended to enable when using SDR mode.

CRC16 – The device may be configured to append a 16-bit CRC16 to each packet. The CRC16 uses the USB CRC polynomial with the added programmability of the seed. If enabled, the receiver will verify the calculated CRC16 for the payload data against the received value in the CRC16 field. The starting value for the CRC16 calculation is configurable, and the CRC16 transmitted may be calculated using either the loaded seed value or a zero seed; the received data CRC16 will be checked against both the configured and zero CRC16 seeds.

CRC16 detects the following errors:

- · Any one bit in error
- Any two bits in error (no matter how far apart, which column, and so on)
- Any odd number of bits in error (no matter where they are)
- An error burst as wide as the checksum itself

Figure 6-1 shows an example packet with SOP, CRC16 and lengths fields enabled, and *Figure 6-2* shows a standard ACK packet.

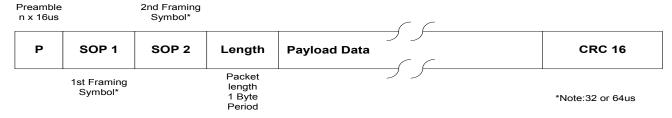


Figure 6-1. Example Default Packet Format

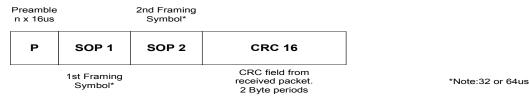


Figure 6-2. ACK Default Packet Format

6.3 Packet Buffers

All data transmission and reception utilizes the 16-byte packet buffers—one for transmission and one for reception.

The transmit buffer allows a complete packet of up to 16-bytes of payload data to be loaded in one burst SPI transaction, and then transmitted with no further MCU intervention. Similarly, the receive buffer allows an entire packet of payload data up to 16 bytes to be received with no firmware intervention required until packet reception is complete.

The CYRF6936 IC supports packet length of up to 40 bytes; interrupts are provided to allow an MCU to use the transmit and receive buffers as FIFOs. When transmitting a packet longer than 16 bytes, the MCU can load 16-bytes initially, and add further bytes to the transmit buffer as transmission of data creates space in the buffer. Similarly, when receiving packets longer than 16 bytes, the MCU must fetch received data from the FIFO periodically during packet reception to prevent it from overflowing.

6.4 Auto Transaction Sequencer (ATS)

The CYRF6936 IC provides automated support for transmission and reception of acknowledged data packets.

When transmitting a data packet, the device automatically starts the crystal and synthesizer, enters transmit mode, transmits the packet in the transmit buffer, and then automatically switches to receive mode and waits for a handshake packet—and then automatically reverts to sleep mode or idle mode when either an ACK packet is received, or a timeout period expires.

Similarly, when receiving in transaction mode, the device waits in receive mode for a valid packet to be received, and then automatically transitions to transmit mode, transmits an ACK packet, and then switches back to receive mode to await the next packet. The contents of the packet buffers are not affected by the transmission or reception of ACK packets.

In each case, the entire packet transaction takes place without any need for MCU firmware action; to transmit data the MCU simply needs to load the data packet to be transmitted, set the length, and set the TX GO bit. Similarly, when receiving packets in transaction mode, firmware simply needs to retrieve the fully received packet in response to an interrupt request indicating reception of a packet.

6.5 Backward Compatibility

The CYRF6936 IC is fully interoperable with the main modes of the first generation devices. The 62.5-kbps mode is supported by selecting 32-chip DATA_CODE_ADR codes, DDR mode, and disabling the SOP, length, and CRC16 fields. Similarly, the 15.675-kHz mode is supported by selecting 64-chip DATA_CODE_ADR codes and SDR mode.

In this way, a suitably configured CYRF6936 IC device may transmit data to and/or receive data from a first generation device.

6.6 Data Rates

By combining the DATA_CODE_ADR code lengths and data transmission modes described above, the CYRF6936 IC supports the following data rates:

- 1000-kbps (GFSK)
- 250-kbps (32-chip 8DR)
- 125-kbps (64-chip 8DR)
- 62.5-kbps (32-chip DDR)
- 31.25-kbps (64-chip DDR)
- 15.625-kbps (64-chip SDR)

Lower data rates typically provide longer range and/or a more robust link.

7.0 Functional Block Overview

7.1 2.4-GHz Radio

The radio transceiver is a dual conversion low IF architecture optimized for power and range/robustness. The radio employs channel-matched filters to achieve high performance in the presence of interference. An integrated Power Amplifier (PA) provides up to +4 dBm transmit power, with an output power control range of 34 dB in 7 steps. The supply current of the device is reduced as the RF output power is reduced.

Table 7-1. Internal PA Output Power Step Table

PA Setting	Typical Output Power (dBm)
7	+4
6	0
5	-5
4	-10
3	-15
2	-20
1	-25
0	-30

7.2 Frequency Synthesizer

Before transmission or reception may commence, it is necessary for the frequency synthesizer to settle. The settling time varies depending on channel; 25 fast channels are provided with a maximum settling time of $100-\mu s$.

The "fast channels" (<100- μ s settling time) are every 3rd frequency, starting at 2400 MHz up to and including 2472 MHz (i.e., 0,3,6,9......69 & 72).

7.3 Baseband and Framer

The baseband and framer blocks provide the DSSS encoding and decoding, SOP generation and reception and CRC16 generation and checking, as well as EOP detection and length field.

7.4 Packet Buffers and Radio Configuration Registers

Packet data and configuration registers are accessed through the SPI interface. All configuration registers are directly addressed through the address field in the SPI packet (as in the CYWUSB6934). Configuration registers are provided to allow configuration of DSSS PN codes, data rate, operating mode, interrupt masks, interrupt status, etc.

7.5 SPI Interface

The CYRF6936 IC has a 4-wire SPI interface supporting communications between an application MCU and one or more slave devices (including the CYRF6936). The SPI interface supports single-byte and multi-byte serial transfers. The 4-wire SPI communications interface consists of Master Out-Slave In (MOSI), Master In-Slave Out (MISO), Serial Clock (SCK), and Slave Select (SS).

The device receives SCK from an application MCU on the SCK pin. Data from the application MCU is shifted in on the MOSI pin. Data to the application MCU is shifted out on the MISO pin. The active-low Slave Select (SS) pin must be asserted to initiate an SPI transfer.

The application MCU can initiate SPI data transfers via a multibyte transaction. The first byte is the Command/Address byte, and the following bytes are the data bytes as shown in *Figure 7-1* through *Figure 7-4*. The SPI communications interface has a burst mechanism, where the command byte can be followed by as many data bytes as desired. A burst transaction is terminated by deasserting the slave select (SS = 1).

The SPI communications interface single read and burst read sequences are shown in *Figure 7-2* and *Figure 7-3*, respectively.

The SPI communications interface single write and burst write sequences are shown in *Figure 7-4* and *Figure 7-5*, respectively.

This interface may optionally be operated in a 3-pin mode with the MISO and MOSI functions combined in a single bidirectional data pin (SDAT). When using 3-pin mode, user firmware should ensure that the MOSI pin on the MCU is in a highimpedance state except when MOSI is actively transmitting data.

The device registers may be written to or read from 1 byte at a time, or several sequential register locations may be written/read in a single SPI transaction using incrementing burst mode. In addition to single byte configuration registers, the device includes register files; register files are FIFOs written to and read from using non-incrementing burst SPI transactions.

The IRQ pin function may optionally be multiplexed onto the MOSI pin; when this <u>option</u> is enabled the IRQ function is not available while the SS pin is low. When using this configuration, user firmware should ensure that the MOSI pin on the MCU is in a high impedance state whenever the SS pin is high.

The SPI interface is not dependent on the internal 12-MHz clock, and registers may therefore be read from or written to while the device is in sleep mode, and the 12-MHz oscillator disabled.

The SPI interface and the IRQ and RST pins have a separate voltage reference pin (V_{IO}), enabling the device to interface directly to MCUs operating at voltages above or below the CYRF6936 IC supply voltage.

			Byte 1	Byte 1+N
Bit #	7	6	[5:0]	[7:0]
Bit Name	DIR	INC	Address	Data

Figure 7-1. SPI Transaction Format

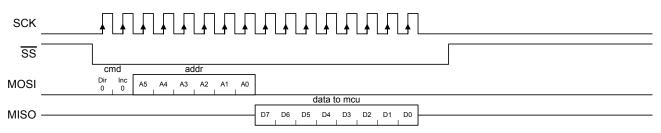


Figure 7-2. SPI Single Read Sequence

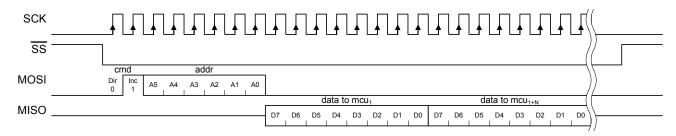
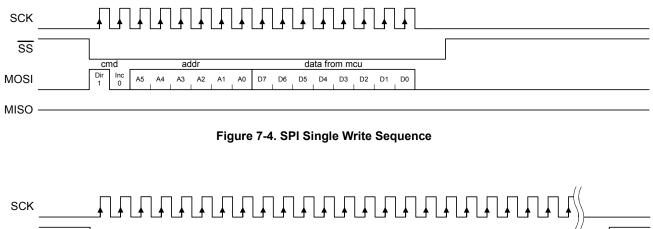
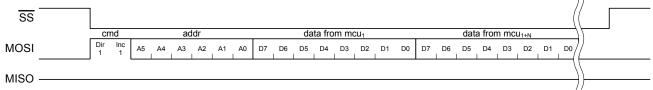




Figure 7-3. SPI Incrementing Burst Read Sequence

7.6 Interrupts

The device provides an interrupt (IRQ) output, which is configurable to indicate the occurrence of various different events. The IRQ pin may be programmed to be either active high or active low, and be either a CMOS or open drain output. A full description of all the available interrupts can be found in *Section 9.0*.

The CYRF6936 IC features three sets of interrupts: transmit, receive, and system interrupts. These interrupts all share a single pin (IRQ), but can be independently enabled/disabled. In transmit mode, all receive interrupts are automatically disabled, and in receive mode all transmit interrupts are automatically disabled. However, the contents of the enable registers are preserved when switching between transmit and receive modes.

If more than one interrupt is enabled at any time, it is necessary to read the relevant status register to determine which event caused the IRQ pin to assert. Even when a given interrupt source is disabled, the status of the condition that would otherwise cause an interrupt can be determined by reading the appropriate status register. It is therefore possible to use the devices without making use of the IRQ pin by polling the status register(s) to wait for an event, rather than using the IRQ pin.

7.7 Clocks

A 12-MHz crystal (30-ppm or better) is directly connected between XTAL and GND without the need for external capacitors. A digital clock out function is provided, with selectable output frequencies of 0.75-, 1.5-, 3-, 6-, or 12-MHz. This output may be used to clock an external microcontroller (MCU) or ASIC. This output is enabled by default, but may be disabled.

Below are the requirements for the crystal to be directly connected to XTAL pin and GND:

- Nominal Frequency: 12 MHz
- · Operating Mode: Fundamental Mode
- · Resonance Mode: Parallel Resonant
- Frequency Initial Stability: ±30 ppm
- Series Resistance: <a>60 ohms
- · Load Capacitance: 10 pF
- Drive Level: 10 μ W–100 μ W

7.8 Power Management

The operating voltage of the device is 1.8V to 3.6V DC, which is applied to the V_{BAT} pin. The device can be shutdown to a fully static sleep mode by writing to the FRC END = 1 and END STATE = 000 bits in the XACT_CFG_ADR register over the SPI interface. The device will enter sleep mode within 35- μ s after the last SCK positive edge at the end of this SPI transaction. Alternatively, the device may be configured to automatically enter sleep mode after completing packet transmission or reception. When in sleep mode, the on-chip oscillator is stopped, but the SPI interface remains functional. The device will wake from sleep mode automatically when the device is commanded to enter transmit or receive mode. When resuming from sleep mode, there is a short delay while the oscillator restarts. The device may be configured to assert the IRQ pin when the oscillator has stabilized.

The output voltage (V_{REG}) of the Power Management Unit (PMU) is configurable to several minimum values between 2.4V and 2.7V. V_{REG} may be used to provide up to 15 mA (average load) to external devices. It is possible to disable the PMU, and to provide an externally regulated DC supply voltage to the device in the range 2.4V to 3.6V. The PMU also provides a regulated 1.8V supply to the logic.

The PMU has been designed to provide high boost efficiency (74–85% depending on input voltage, output voltage and load) when using a Schottky diode and power inductor, eliminating the need for an external boost converter in many systems where other components require a boosted voltage. However, reasonable efficiencies (69-82% depending on input voltage, output voltage and load) may be achieved when using low cost components such as SOT23 diodes and 0805 inductors.

The PMU also provides a configurable low battery detection function which may be read over the SPI interface. One of seven thresholds between 1.8V and 2.7V may be selected. The interrupt pin may be configured to assert when the voltage on the V_{BAT} pin falls below the configured threshold. LV IRQ is not a latched event. Battery monitoring is disabled when the device is in sleep mode.

7.9 Low Noise Amplifier (LNA) and Received Signal Strength Indication (RSSI)

The gain of the receiver may be controlled directly by clearing the AGC EN bit and writing to the Low Noise Amplifier (LNA) bit of the RX_CFG_ADR register. When the LNA bit is cleared, the receiver gain is reduced by approximately 20 dB, allowing accurate reception of very strong received signals (for example when operating a receiver very close to the transmitter). An additional 20 dB of receiver attenuation can be added by setting the Attenuation (ATT) bit; this allows data reception to be limited to devices at very short ranges. Disabling AGC and enabling LNA is recommended unless receiving from a device using external PA.

The RSSI register returns the relative signal strength of the onchannel signal power.

When receiving, the device may be configured to automatically measure and store the relative strength of the signal being received as a 5-bit value. When enabled, an RSSI reading is taken and may be read through the SPI interface. An RSSI reading is taken automatically when the start of a packet is detected. In addition, a new RSSI reading is taken every time the previous reading is read from the RSSI register, allowing the background RF energy level on any given channel to be easily measured when RSSI is read when no signal is being received. A new reading can occur as fast as once every 12 μ s.

8.0 Application Example

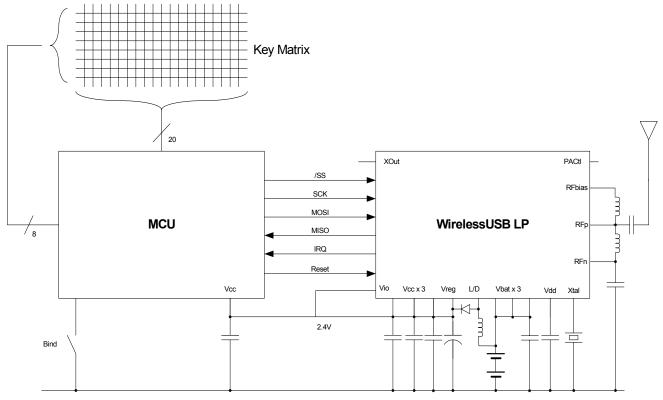


Figure 8-1. CYRF6936 Keyboard

9.0 **Register Descriptions**

All registers are read and writable, except where noted. Registers may be written to or read from either individually or in sequential groups. A single-byte read or write reads or writes from the addressed register. Incrementing burst read and write is a sequence that begins with an address, and then reads or writes to/from each register in address order for as long as clocking continues. It is possible to repeatedly read (poll) a single register using a non-incrementing burst read.

Table 9-1. Register Map Summary

Address	Mnemonic	b7	b6	b5	b4	b3	b2	b1	b0	Default ^[1]	Access ^[1]
0x00	CHANNEL_ADR	Not Used				Channel	•			-1001000	-ppppppp
0x01	TX_LENGTH_ADR		•		TX	Length				00000000	bbbbbbbb
0x02	TX_CTRL_ADR	TX GO	TX CLR	TXB15 IRQEN	TXB8 IRQEN	TXB0 IRQEN	TXBERR IRQEN	TXC IRQEN	TXE IRQEN	00000011	bbbbbbbb
0x03	TX_CFG_ADR	Not Used	Not Used	DATA CODE LENGTH	DATA	MODE		PA SETTING		000101	bbbbbb
0x04	TX_IRQ_STATUS_ADR	OS IRQ	LV IRQ	TXB15 IRQ	TXB8 IRQ	TXB0 IRQ	TXBERR IRQ	TXC IRQ	TXE IRQ	10111000	rrrrrrr
0x05	RX_CTRL_ADR	RX GO	RSVD	RXB16 IRQEN	RXB8 IRQEN	RXB1 IRQEN	RXBERR IRQEN	RXC IRQEN	RXE IRQEN	00000111	bbbbbbbb
0x06	RX_CFG_ADR	AGC EN	LNA	ATT	HILO	FASTTURN EN	Not Used	RXOW EN	VLD EN	10010-10	bbbbb-bb
0x07	RX_IRQ_STATUS_ADR	RXOW IRQ	SOFDET IRQ	RXB16 IRQ	RXB8 IRQ	RXB1 IRQ	RXBERR IRQ	RXC IRQ	RXE IRQ	00000000	brrrrrr
0x08	RX_STATUS_ADR	RX ACK	PKT ERR	EOP ERR	CRC0	Bad CRC	RX Code	RX Dat	ta Mode	00001	rrrrrrr
0x09	RX_COUNT_ADR					Count				00000000	rrrrrrr
0x0A	RX_LENGTH_ADR				RX	Length				00000000	rrrrrrr
0x0B	PWR_CTRL_ADR	PMU EN	LVIRQ EN	PMU SEN	Not Used	LV	1 TH		OUTV	10100000	bbb-bbbb
0x0C	XTAL_CTRL_ADR	XOL	JT FN	XSIRQ EN	Not Used	Not Used		FREQ		000100	bbbbbb
0x0D	IO_CFG_ADR	IRQ OD	IRQ POL	MISO OD	XOUT OD	PACTL OD	PACTL GPIO	SPI 3PIN	IRQ GPIO	00000000	bbbbbbbb
0x0E	GPIO_CTRL_ADR	XOUT OP	MISO OP	PACTL OP	IRQ OP	XOUT IP	MISO IP	PACTL IP	IRQ IP	0000	bbbbrrrr
0x0F	XACT_CFG_ADR	ACK EN	Not Used	FRC END		END STATE		ACF	K TO	1-000000	b-bbbbbb
0x10	FRAMING_CFG_ADR	SOP EN	SOP LEN	LEN EN			SOP TH			10100101	bbbbbbbb
0x11	DATA32_THOLD_ADR	Not Used	Not Used	Not Used	Not Used		Т	H32		0100	bbbb
0x12	DATA64_THOLD_ADR	Not Used	Not Used	Not Used			TH64			01010	bbbbb
0x13	RSSI_ADR	SOP	Not Used	LNA			RSSI			0-100000	r-rrrrr
0x14	EOP_CTRL_ADR	HEN		HINT			E	EOP		10100100	bbbbbbbb
0x15	CRC_SEED_LSB_ADR				CRC S	EED LSB				00000000	bbbbbbbb
0x16	CRC_SEED_MSB_ADR				CRC S	EED MSB				00000000	bbbbbbbb
0x17	TX_CRC_LSB_ADR				CR	C LSB					rrrrrrr
0x18	TX_CRC_MSB_ADR				CR	C MSB					rrrrrrr
0x19	RX_CRC_LSB_ADR				CR	C LSB				11111111	rrrrrrr
0x1A	RX_CRC_MSB_ADR				CR	C MSB				11111111	rrrrrrr
0x1B	TX_OFFSET_LSB_ADR				STR	IM LSB				00000000	bbbbbbbb
0x1C	TX_OFFSET_MSB_ADR	Not Used	Not Used	Not Used	Not Used		STR	IM MSB		0000	bbbb
0x1D	MODE_OVERRIDE_ADR	RSVD	RSVD	FRC SEN	FRC /	AWAKE	Not Used	Not Used	RST	000000	wwwwww
0x1E	RX_OVERRIDE_ADR	ACK RX	RXTX DLY	MAN RXACK	FRC RXDR	DIS CRC0	DIS RXCRC	ACE	Not Used	0000000-	bbbbbbb-
0x1F	TX_OVERRIDE_ADR	ACK TX	FRC PRE	RSVD	MAN TXACK	OVRD ACK	DIS TXCRC	RSVD	TX INV	00000000	bbbbbbbb
0x27	CLK_OVERRIDE_ADR	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD	00000000	WWWWWWW
0x28	CLK_EN_ADR	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD	00000000	WWWWWWW
0x29	RX_ABORT_ADR	RSVD	RSVD	ABORT EN	RSVD	RSVD	RSVD	RSVD	RSVD	00000000	wwwwwwww
0x32	AUTO_CAL_TIME_ADR			-	AUTO_CA	L_TIME_MAX				00000011	WWWWWWW
0x35	AUTO_CAL_OFFSET_ADR			AL	JTO_CAL_O	FFSET_MINU	S_4			00000000	WWWWWWW
0x39	ANALOG_CTRL_ADR	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	ALL SLOW	00000000	WWWWWWW
Register Fi	iles										
0x20	TX_BUFFER_ADR		TX Buffer File								WWWWWWW
0x21	RX_BUFFER_ADR		RX Buffer File								rrrrrrr
0x22	SOP_CODE_ADR		SOP Code File								bbbbbbbb
0x23	DATA_CODE_ADR				Data (Code File				Note 3	bbbbbbbb
0x24	PREAMBLE_ADR				Prear	nble File				Note 4	bbbbbbbb
0x25	MFG ID ADR				MFG	ID File				NA	rrrrrrr

Notes:

b = read/write, r = read only, w = write only, - = not used, default value is undefined. SOP_CODE_ADR default = 0x17FF9E213690C782. DATA_CODE_ADR default = 0x02F9939702FA5CE3012BF1DB0132BE6F. PREAMBLE_ADR default = 0x333302. 1.

2. 3. 4.

Mnemonic		Cł	ANNEL_ADR				Address	0x00		
Bit	7	6	5	4	3	2	1	0		
Default	-	1	0	0	1	0	0	0		
Read/Write	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Function	Not Used		1		Channel		1 1			
Bits 6:0 Th	his field selects the		Channel channel. 0x00 sets 2400 MHz; 0x62 sets 2498 MHz. Values above 0x62 are not valid. The default pove the frequency typically used in non-overlapping WiFi systems. Any write to this register will im							

time it takes the synthesizer to settle. fast $(100-\mu s) - 0 \ 3 \ 6 \ 9 \ 12 \ 15 \ 18 \ 21 \ 24 \ 27 \ 30 \ 33 \ 36 \ 39 \ 42 \ 45 \ 48 \ 51 \ 54 \ 57 \ 60 \ 63 \ 66 \ 69 \ 72 \ 96$ medium $(180-\mu s) - 2 \ 4 \ 8 \ 10 \ 14 \ 16 \ 20 \ 22 \ 26 \ 28 \ 32 \ 34 \ 38 \ 40 \ 44 \ 46 \ 50 \ 52 \ 56 \ 58 \ 62 \ 64 \ 68 \ 70 \ 74 \ 76 \ 78 \ 80 \ 82 \ 84 \ 86 \ 88 \ 90 \ 92 \ 94$ slow $(270-\mu s) - 1 \ 5 \ 7 \ 11 \ 13 \ 17 \ 19 \ 23 \ 25 \ 29 \ 31 \ 35 \ 35 \ 37 \ 41 \ 43 \ 47 \ 49 \ 53 \ 55 \ 59 \ 61 \ 65 \ 67 \ 71 \ 73 \ 75 \ 77 \ 79 \ 81 \ 83 \ 85 \ 87 \ 89 \ 91 \ 93 \ 95 \ 97$ Usable channels subject to regulation.

Mnemonic	:	TX_	LENGTH_ADR				Address	0x01
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function				TX L	ength			
Bits 7:0	This register sets and CRC16 field ten after transmis for all packets is	s (if enabled), bu ssion of the packe	t no data field. P et has begun. Ty	acket lengths o	f more than 16 updated prior	bytes will requir to setting TX G0	e that some data D. The maximum	bytes be writ-

Maximum packet length is limited by the delta between the transmitter and receiver crystals of 60-ppm or better.

Mnemonio	:	T	X_CTRL_ADR				Address	0x02
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	TX GO	TX CLR	TXB15 IRQEN	TXB8 IRQEN	TXB0 IRQEN	TXBERR IRQEN	TXC IRQEN	TXE IRQEN
Bit 7	Start Transmission automatically at th is loaded after set the length of the S channel in 8DR m length) + 32 µs (le TXBERR IRQ will	e end of packet ting this bit, the GOP code, the le ode with 32 chip ength byte) = 225	transmission. T length of time a ngth of preamb o SOP codes the	he transmit buff vailable to load le, and the pack time available	fer may be load the buffer depen set data rate. Fo is 100 μs (syntt	ed either before nds on the starti r example, if sta n start) + 32 μs	or after setting t ing state (sleep, arting from idle m (preamble) + 64	this bit. If data idle or synth), node on a fast μs (SOP
Bit 6	Clear TX Buffer. W may be retransmit setting this bit if TX GO bit has been s	ted by setting T X GO is set after	X GO and not s the new packe	etting this bit. A t is loaded to the	new transmit pa e buffer. If the T	acket may be lo X_BUFFER_AD	aded and transn)R is to be loade	nitted without d after the TX
Bit 5	Buffer Not Full Inte	errupt Enable. S	ee TX_IRQ_ST	ATUS_ADR for	description.			
Bit 4	Buffer Half Empty	Interrupt Enable	e. See TX_IRQ_	STATUS_ADR	for description.			
Bit 3	Buffer Empty Inter	rupt Enable. Se	e TX_IRQ_STA	TUS_ADR for d	escription.			
Bit 2	Buffer Error Interru	upt Enable. See	TX_IRQ_STAT	US_ADR for de	scription.			
Bit 1	Transmission Con set together.	nplete Interrupt	Enable. See TX	_IRQ_STATUS_	_ADR for descri	ption. TXC IRQ	EN and TXE IRC	QEN must be
Bit 0	Transmit Error Inte together.	errupt Enable. S	ee TX_IRQ_ST	ATUS_ADR for	description. TX	C IRQEN and T	XE IRQEN must	be set

Mnemonic			TX_CFG_ADR				Address	0x03
Bit	7	6	5	4	3	2	1	0
Default	-	-	0	0	0	1	0	1
Read/Write	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Function	Not Used	Not Used	Data Code Length	Data	Mode	PA Setting		
Bit 5	ata Code Length						n of the packet.	This bit is
Bits 4:3		Mode. This field sets the data transmission mode. 00 = 1-Mbps GFSK. 01 = 8DR Mode. 10 = DDR Mode. 11 = SDR Mode. ecommended that firmware sets the ALL SLOW bit in register ANALOG_CTRL_ADR when using GFSK data rate mode.						
Bits 2:0	Setting. This fie = –5 dBm, 6 = 0		0	ngth. 0 = –30 dE	3m, 1 = –25 dBr	m, 2 = –20 dBm	, 3 = –15 dBm, 4	4 = –10 dBm,

Mnemonic		TX_IRQ_	STATUS_ADR				Address	0x04	
Bit	7	6	5	4	3	2	1	0	
Default	1	0	1	1	1	0	0	0	
Read/Write	R	R R R R R R R							
Function	OS IRQ	LV IRQ	TXB15 IRQ	TXB8 IRQ	TXB0 IRQ	TXBERR IRQ	TXC IRQ	TXE IRQ	
whenever one of may change val termination of a Bit 7 O Bit 6 Lo in Bit 5 B Bit 4 B Bit 3 B Bit 2 B en	RQ status bits is r more bits in this ue at different tin transmission due scillator Stable If ow Voltage Interr terrupt is automa uffer Not Full Inter uffer Half Empty uffer Empty Inter uffer Error Interru mpty and the num nd the buffer is a	s register is set nes in response e to an exceptio RQ Status. This upt Status. This atically disabled errupt Status. The Interrupt Status. This rupt Status. This nber of bytes rep	and the corresp to a single even n does not leav bit is set when bit is set when whenever the F his bit is set when . This bit is set when s bit is set at an IRQ is triggered maining to be tra	onding IRQ ena nt). In particular e the device in a the internal crys the voltage on V PMU is disabled enever there are whenever there y time that the t I by either of two ansmitted is gre	able bit is also s , standard error an inconsistent s atal oscillator ha V_{BAT} is below th . When enabled a 15 or fewer by are 8 or fewer t ransmit buffer is o events: (1) Wh ater than zero. (et. Status bits an handling is only state. s settled (synthe e LVI threshold l, this bit reflects tes remaining in bytes remaining s empty. hen the transmit 2) When a byte	re non-atomic (d effective if the p esizer sequence (see PWR_CTL the voltage on V the transmit buf in the transmit b buffer (TX_BUF	ifferent flags premature starts). _ADR). This V _{BAT} . ifer. puffer. FER_ADR) is	
er er te or er a T. Bit 0 Tr tr	ransmission Corr nabled then this i nabled, this intern ay change value er returns TXC IR courred by exam rror in transmissi- second read to t XC IRQ and TXE ransmit Error Inte ansaction mode. ears this bit.	interrupt is triggered at different time Q=1 and TXE II ining the status on. If the first re- his register for a IRQ. errupt Status. Th	ered immediate at the end of a es in response t RQ=0 then firm of TXE. There c ad of this registe o given transaction his IRQ is trigge	ly after transmis transaction. Rea o a single event ware must exec can be a case w er returns TXC I on. If an ACK is red when there	sion of the last ading this regist . If transaction r ute a second re hen this bit is no IRQ = 1 and TX received RXC is an error in tra	bit of the CRC1 er clears this bit node is enabled ad to this registe ot triggered whe E IRQ = 1 then t IRQ and RXE IF	6. If transaction i . TXC IRQ and T and the first rea er to determine i in ACK EN = 1 a the firmware mus Q may be asser	mode is TXE IRQ flags id of this regis- f an error nd there is an st not execute ted instead of	

Mnemonic		R	X_CTRL_ADR				Address	0x05		
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	1	1	1		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Function	RX GO	RSVD	RXB16 IRQEN	RXB8 IRQEN	RXB1 IRQEN	RXBERR IRQEN	RXC IRQEN	RXE IRQEN		
Status bits are non-atomic (different flags may change value at different times in response to a single event). Bit 7 Start Receive. Setting this bit causes the device to transition to receive mode. If necessary, the crystal oscillator and synthesizer will start automatically after this bit is set. Firmware must never clear this bit. This bit must not be set until after it self clears. The recommended method to exit receive mode when an error has occurred is to force END STATE and then dummy read all RX_COUNT_ADR bytes from RX_BUFFER_ADR or poll RSSI_ADR.SOP (bit 7) until set. See XACT_CFG_ADR and RX_ABORT_ADR for description.										
Bit 6	Start of Packet Detect Interrupt Enable. See RX_IRQ_STATUS_ADR for description.									
Bit 5	Buffer Full Interru	ffer Full Interrupt Enable. See RX_IRQ_STATUS_ADR for description.								
Bit 4	Buffer Half Empty	Interrupt Enabl	e. See RX_IRQ	_STATUS_ADR	for description.					

Bit 3 Buffer Not Empty Interrupt Enable. See RX_IRQ_STATUS_ADR for description.

Bit 2 Buffer Error Interrupt Enable. See RX_IRQ_STATUS_ADR for description.

Bit 1 Packet Reception Complete Interrupt Enable. See RX_IRQ_STATUS_ADR for description.

Bit 0 Receive Error Interrupt Enable. See RX_IRQ_STATUS_ADR for description.

Mnemonic		I	RX_CFG_ADR				Address	0x06
Bit	7	6	5	4	3	2	1	0
Default	1	0	0	1	0	-	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	-	R/W	R/W
Function	AGC EN	LNA	ATT	HILO	FAST TURN EN	Not Used	RXOW EN	VLD EN
Status bits ar	re non-atomic (differ	ent flags may cl	hange value at	different times in	n response to a	single event).		
Bit 7	Automatic Gain Co When this bit is cle tion. It is recomme may receive data t	eared the LNA is nded that this b rom a device us	s controlled mar it be disabled a sing an external	nually using the nd bit 6 (LNA) b PA to transmit	LNA bit. Typical e enabled unles signals at >+4 d	l applications w s the device wi Bm.	ill clear this bit du Il be used in a sy	uring initializa- /stem where it
Bit 6	Low Noise Amplifie when AGC EN is s receive mode is sl	et, this bit has n	io effect. Setting	this bit enables	s the LNA; cleari	ing this bit disab	oles the LNA. Dev	
Bit 5	Receive Attenuato tize the receiver so the LNA is manual	that only very	•					
Bit 4	HILO. When FAST selected, or the low receiver and shoul initialization.	v frequency. 1 =	= hi; 0 = lo. Whe	n FAST TURN	EN is not enable	ed this also con	trols the highlow	bit to the
Bit 3	Fast Turn Mode E above the RX Syn turn-around, becar sizer re-settling pe bits are automatica will set this bit duri	thesizer frequer use the same sy riod between tra ally inverted to c	ncy or 1 MHz be inthesizer freque ansmit and rece compensate for	elow the receive ency may be us eive. Note that w	r synthesizer fre sed for both tran vhen this bit is se	equency. Use of smit and receiv et, and the HILC	f this mode allow re, thus eliminatir O bit is cleared, r	rs for very fast ng the synthe- received data
Bit 1	Overwrite Enable. receive buffer are this bit is cleared, empty SOP condit pletely read from t	lost, and the ne then the receive tons are ignored	w packet is load buffer may not d, and it is not p	ded into the rece be over-written	eive buffer. Whe	n this bit is set, et, and wheneve	the RXOW IRQ er the receive bu	is enabled. If ffer is not
Bit 0	Valid Flag Enable. store valid flags. S				re only 8 bytes o	of data. The oth	er half of the buf	fer is used to

Mnemonic		RX_IRQ_	STATUS_ADR				Address	0x07		
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R/W	R	R	R	R	R	R	R		
Function	RXOW IRQ	RSVD	RXB16 IRQ	RXB8 IRQ	RXB1 IRQ	RXBERRIRQ	RXC IRQ	RXE IRQ		
whenever one on may change va	IRQ Status bits is or more bits in this lue at different tim a transmission due	s register is set nes in response	and the corresp to a single even	onding IRQ ena nt). In particular	able bit is also s standard error	et. Status bits an handling is only	re non-atomic (d	ifferent flags		
ל וי ח	Receive Overwrite before the previou s only possible wh nay be read from	s packet has be nen the RXOW I the receive buff	en read from th EN bit in RX_CF	e buffer. This bi	t is cleared by w	vriting any value	to this register.	This condition		
	Reserved. Must no									
Bit 5 F	Receive Buffer Fu	II Interrupt Statu	s. This bit is set	t whenever the i	receive buffer is	full, and cleare	d otherwise.			
il c s c	emain in the buffe f the packet data i conditions, and for should be sure to o of bytes unloaded Receive Buffer No	is being read ou r all bytes prior t check the RX_C is less than the	t of the buffer w o the last. Whe OUNT_ADR va reported count,	while the packet on using RXB1_ lue after the RX , even though th	is still being rec IRQ and unload C/RXE is set an le RXB1_IRQ is	eived. The flag ling the packet o id unload the las not set	is trustworthy ur data during recep st remaining byte	nder all other otion, the user if the number		
	leared when the i							e bullet., allu		
is	Receive Buffer Err s an attempt to rea and a SOP is rece	ad data. (2) Wh								
e a c c r r r r r r	Packet Receive Complete Interrupt Status. This IRQ is triggered when a packet has been received. If transaction mode is enabled, then this bit is not set until after transmission of the ACK. If transaction mode is not enabled then this bit is set as soon as a valid packet is received. This bit is cleared when this register is read. RXC IRQ and RXE IRQ flags may change value at different times in response to a single event. There are cases when this bit is not triggered when ACK EN = 1 and there is an error in reception. Therefore, firmware should examine RXC IRQ, RXE IRQ, and CRC 0 to determine receive status. If the first read of this register returns RXC IRQ = 1 and RXE IRQ = 0 then firmware must execute a second read to this register to determine if an error occurred by examining the status of RXE IRQ. If the first read of this register returns RXC IRQ = 1 and RXE IRQ = 1 then the firmware must not execute a second read to this register for a given transaction.									
r b	Receive Error Inte eceived with a ba because the receive eading RX_STAT	d CRC16, an ur ve buffer is still i	nexpected EOP not empty when	is detected, a p the next packe	acket type (data t starts. The exa	a or ACK) mism	atch, or a packe	t is dropped		

Mnemonic		RX_	STATUS_ADR				Address	0x08		
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	1	-	-	-		
Read/Write	R	R	R	R	R	R	R	R		
Function	RX ACK	PKT ERR	EOP ERR	CRC0	Bad CRC	RX Code	RX Data	Mode		
		rmware does not read this register until after TX GO self clears. Status bits are non-atomic (different flags may change value response to a single event).								
Bit 7	RX Packet Type. 1 packet.	X Packet Type. This bit is set when the received packet is an ACK packet, and cleared when the received packet is a standard acket.								
Bit 6		Receive Packet Type Error. This bit is set when the packet type received is what not was expected and cleared when the backet type received was as expected. For example, if a data packet is expected and an ACK is received, this bit will be set.								
Bit 5	Unexpected EOP. received. This bit i invalid bits detected	s cleared when	SOP pattern for	the next packe	et has been rece	0				
Bit 4	Zero-seed CRC16	. This bit is set	whenever the C	RC16 of the las	t received pack	et has a zero se	ed.			
Bit 3	Bad CRC16. This	bit is set when t	he CRC16 of th	e last received	packet is incorre	ect.				
Bit 2		eive Code Length. This bit indicates the DATA_CODE_ADR code length used in the last correctly received packet. 1 = 64- code, 0 = 32-chip code.								
Bits 1:0		ive Data Mode. These bits indicate the data mode of the last correctly received packet. 00 = 1-Mbps GFSK 01 = 8DR 10 = . 11 = Not Valid. These bits do not apply to unframed packets.								

Mnemonic		RX_	_COUNT_ADR				Address	0x09			
Bit	7	6	5	4	3	2	1	0			
Default	0	0	0	0	0	0	0	0			
Read/Write	R	R	R	R	R	R	R	R			
Function		RX Count									

Count bits are non-atomic (updated at different times).

Bits 7:0 This register contains the total number of payload bytes received during reception of the current packet. After packet reception is complete, this register will match the value in RX_LENGTH_ADR unless there was a packet error. This register is reset to 0x00 when RX_LENGTH_ADR is loaded. Count should not be read when RX_GO=1 during a transaction.

Mnemonic		RX_I	_ENGTH_ADR				Address	0x0A				
Bit	7	6	5	4	3	2	1	0				
Default	0	0	0	0	0	0	0	0				
Read/Write	R	R	R	R	R	R	R	R				
Function		RX Length										
Length bits a Bits 7:0	This register conta detected). If there i error is flagged.	ins the length fi	eld which is upd	lated with the re	eception of a n	ew length field (s	,					

Mnemonic		PW	R_CTRL_ADR				Address	0x0B			
Bit	7	6	5	4	3	2	1	0			
Default	1	0	1	-	0	0	0	0			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Function	PMU EN	LVIRQ EN	PMU SEN	Not Used	LVI	TH	PMU (VTUC			
Bit 7	and the V _{BAT} volta PMU is enabled a	Power Management Unit (PMU) Enable. Setting this bit enables the PMU. When the PMU is disabled, or if the PMU is enabled and the V_{BAT} voltage is above the value set in Bits 1:0 of this register, the V_{REG} pin is internally connected to the V_{BAT} pin. if the PMU is enabled and the V_{BAT} voltage is below the value set by PMU OUTV, then the PMU will boost the V_{REG} pin to a voltage to less than the value set by PMUOP.									
Bit 6	Low Voltage Interr falls below the thre is in sleep mode.	eshold set by LV	'I TH, then a low	v voltage interru	, pt will be genera	ated. The LVI is	not available wh	Dia C			
Bit 5	is not set, then the	s in sleep mode. The LVI event on IRQ pin is automatically disabled whenever the PMU is disabled. PMU Sleep Mode Enable. If this bit is set, the PMU will continue to operate normally when the device is in sleep mode. If this bit is not set, then the PMU is disabled when the device is in sleep mode. In this case, if V _{BAT} is below the PMU OUTV voltage and PMU EN is set, when the device enters sleep mode the V _{REG} voltage falls to the V _{BAT} voltage as the V _{REG} capacitors dis-									
Bits 3:2	Low Voltage Interr 01 = 2.2V; 00 = PI	•		ne voltage on V _E	_{BAT} at which the	LVI is triggered	. 11 = 1.8V; 10 =	= 2.0V;			

Bits 1:0 PMU Output Voltage. This field sets the minimum output voltage of the PMU. 11 = 2.4V; 10 = 2.5V; 01 = 2.6V; 00 = 2.7V. When the PMU is active, the voltage output by the PMU on V_{REG} will never be less than this voltage provided that the total load on the V_{REG} pin is less than the specified maximum value, and the voltage in V_{BAT} is greater than the specified minimum value.

Mnemonic		XTA	L_CTRL_ADR				0x0C		
Bit	7	6	5	4	3	2	1	0	
Default	0	0	0	-	-	1	1 0 0 R/W R/W R/W		
Read/Write	R/W	R/W	R/W	-	-	R/W			
Function	XOU	JT FN	XSIRQ EN	Not Used	Not Used	FREQ			
Bits 7:6	XOUT Pin Function FREQ; 01 = Active mode then the MI GPIO mode, and	e LOW PA Cont SO pin will outp	rol; 10 = Radio c ut a serial clock	lata serial bit str associated with	eam. If this opti	on is selected a	nd SPI is configu	red for 3-wire	
Bit 5	,	Trystal Stable Interrupt Enable. This bit enables the OS IRQ interrupt. When enabled, this interrupt generates an IRQ event when the crystal has stabilized after the device has woken from sleep mode. This event is cleared by writing zero to this bit.							
Bits 2:0		XOUT Frequency. This field sets the frequency output on the XOUT pin when XOUT FN is set to 00. 0 = 12 MHz; 1 = 6 MHz,							

2 = 3 MHz, 3 = 1.5 MHz, 4 = 0.75 MHz; other values are not defined.

Mnemonic			IO_CFG_ADR				Address	0x0D		
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Function	IRQ OD	IRQ POL	MISO OD	XOUT OD	PACTL OD	PACTL GPIO	SPI 3PIN	IRQ GPIO		
To use a GPI Bit 7 Bit 6	O pin as an input, t IRQ Pin Drive Stre as a standard CM IRQ Polarity Setti	ength. Setting th OS output, with	is bit configures the output "1" d	the IRQ pin as rive voltage bei	an open drain on an open drain of a second sec	output. Clearing V _{IO} pin voltage.	this bit configure	es the IRQ pin		
Bit 5	polarity to be activ	Q Polarity. Setting this bit configures the IRQ signal polarity to be active HIGH. Clearing this bit configures the IRQ signal larity to be active low. SO Pin Drive Strength. Setting this bit configures the MISO pin as an open drain output. Clearing this bit configures the								
Bit 4	MISO pin as a sta XOUT Pin Drive S XOUT pin as a sta	Strength. Setting	this bit configur	res the XOUT pi	in as an open d	rain output. Clea	ring this bit conf	figures the		
Bit 3	PACTL Pin Drive PACTL pin as a s							nfigures the		
Bit 2	PACTL Pin Functi	on. When this b	it is set the PAC	TL pin is availa	ble for use as a	GPIO.				
Bit 1		TL Pin Function. When this bit is set the PACTL pin is available for use as a GPIO. Mode. When this bit is cleared, the SPI interface acts as a standard 4-wire SPI Slave interface. When this bit is set, the SPI face operates in "3-Wire Mode" combining MISO and MOSI on the same pin (SDAT), and the MISO pin is available as a O pin.								
Bit 0	figurable in IRQ P	Q Pin Function. When this bit is cleared, the IRQ pin is asserted when an IRQ is active; the polarity of this IRQ signal is con- urable in IRQ POL. When this bit is set, the IRQ pin is available for use as a GPIO pin, and the IRQ function is multiplexed o the MOSI pin. In this case the IRQ signal state is presented on the MOSI pin whenever the SS signal is inactive (HIGH).								

Mnemonic		GPI	O_CTRL_ADR				Address	0x0E
Bit	7	6	5	3	2	1	0	
Default	0	0	-	-	-			
Read/Write	R/W	R	R					
Function	XOUT OP	MISO OP	PACTL OP	IRQ OP	XOUT IP	MISO IP	PACTL IP	IRQ IP
Bit 6 M Bit 5 P/ Bit 4 IF Bit 3 X Bit 2 M Bit 1 P/	oin as an input, t OUT Output. Wh ISO Output. Wh ACTL Output. W RQ Output. When OUT Input. When ISO Input. When RQ Input. When t	ten the XOUT p en the MISO pir hen the PACTL in the IRQ pin is in the XOUT pin in the MISO pin i en the PACTL p	in is configured n is configured to pin is configure configured to be is configured to s configured to in is configured	to be a GPIO, th o be a GPIO, th d to be a GPIO, e a GPIO, the st o be a GPIO, the to be a GPIO, the to be a GPIO, th	he state of this be e state of this bi the state of this ate of this bit se e state of this bit state of this bit he state of this b	bit sets the output t sets the output s bit sets the output sts the output sta reflects the volta- reflects the volta- bit reflects the volta-	ut state of the X t state of the MI put state of the ate of the IRQ p tage on the XOL age on the MISC pltage on the PA	OUT pin. SO pin. PACTL pin. in. JT pin.) pin.

Mnemonic			XA	CT_CFG_ADR				Address	0x0F		
Bit		7	6	5	4	3	2	1	0		
Default		1	-	0	0	0	0	0	0		
Read/Write		R/W - R/W R/W R/W R/W						R/W	R/W		
Function		ACK EN Not Used FRC END END STATE ACK TO						ТО			
Bit 7	this ca transit	cknowledge Enable. When this bit is set, an ACK packet is automatically transmitted whenever a valid packet is received; in is case the device is considered to be in transaction mode. After transmission of the ACK packet, the device automatically ansitions to the END STATE. When this bit is cleared, the device transitions directly to the END STATE immediately after the ind of packet transmission.									
Bit 5	same	Force End State. Setting this bit forces a transition to the state set in END STATE. By setting the desired END STATE at the ame time as setting this bit the device may be forced to immediately transition from its current state to any other state. This bit is automatically cleared upon completion.									
Bits 4:2	= Slee typica when device RXE I	s automatically cleared upon completion. Transaction End State. This field defines the mode to which the device transitions after receiving or transmitting a packet. 000 Sleep Mode; 001 = Idle Mode; 010 = Synth Mode (TX); 011 = Synth Mode (RX); 100 = RX Mode. In normal use, this field will prically be set to 000 or 001 when the device is transmitting packets, and 100 when the device is receiving packets. Note that then the device transitions to receive mode as an END STATE, the receiver must still be armed by setting RX GO before the evice can begin receiving data. If the system only support packets <=16 bytes then firmware should examine RXC IRQ and RXE IRQ to determine the status of the packet. If the system supports packets > 16 bytes ensure that END STATE is not sleep, proce RXF=1, perform receive operation, force RXF=0, and if necessary set END STATE back to sleep.									
Bits 1:0	packe timeou is this 10 = 1	et during whic ut period is e value multip 12x; 11 = 15x	ch an ACK must xpressed in terr blied by 64 μs ar	be correctly rec ns of a number on the if SOP LEN is E_ADR code le	ceived in order t of SOP_CODE_ s cleared then t ength. ACK_TO	o prevent a tran ADR code leng he timeout is thi	smit error condi ths; if SOP LEN s value multiplie	riod after transm ition from being of l is set, then the t ed by 32 μ s. 00 = + Data Code Lei	detected. This timeout period = 4x; 01 = 8x,		

Mnemonic		FRAMI	NG_CFG_ADR	R Address						
Bit	7	6	5	4	3	2	1	0		
Default	1	0	1	0	0	1	0	1		
Read/Write	Vrite R/W R/W R/W R/W R/W R/W R/W							R/W		
Function	SOP EN	SOP LEN	LEN EN			SOP TH				
Bit 7	SOP Enable. When this bit is set, each transmitted packet begins with a SOP field, and only packets beginning with a valid SOP field will be received. If this bit is cleared, no SOP field will be generated when a packet is transmitted, and packet reception will begin whenever two successive correlations against the DATA_CODE_ADR code are detected.									
Bit 6	SOP PN Code Length. When this bit is set the SOP_CODE_ADR code length is 64 chips. When this bit is cleared the SOP_CODE_ADR code length is 32 chips.									
Bit 5	Packet Length En SOP field. In recei bit is cleared no pa requires user set I	ve mode, the 8 acket length fiel	bits immediately	following the S	OP field are inte	erpreted as the I	ength of the pack	et. When this		
Bits 4:0	SOP Correlator Threshold. This is the receive data correlator threshold used when attempting to detect a SOP symbol. There is a threshold for the SOP_CODE_ADR code. This (single) threshold is applied independently to each of SOP1 and SOP2 fields. There are then two thresholds for each of the 64-chip DATA_CODE_ADR codes and 32 chip DATA_CODE_ADR codes. When SOP LEN is set, all 5 bits of this field are used. When SOP LEN is cleared, the most significant bit is disregarded. Typical applications configure SOP TH = 04h for SOP32 and SOP TH = 0Eh for SOP64.									

Mnemonic			DATA32	THOLD_ADR				Address	0x11	
Bit		7	6	5	4	3	2	1	0	
Default		-	-	-	-	0	1	0	0	
Read/Write		-	-	-	-	R/W	R/W	R/W	R/W	
Function		Not Used	Not Used	Not Used	Not Used		TH	132		
Bits 3:0:	32 Chip Data PN Code Correlator Threshold. This register sets the correlator threshold used in DSSS modes when DATA CODE LENGTH (see TX_CFG_ADR) is set to 32. Typical applications configure TH32 = 05h.									

Mnemonic			DATA64	THOLD_ADR				Address	0x12	
Bit		7	6	5	4	3	2	1	0	
Default		-	-	-	0	1	0	1	0	
Read/Write		-	-	-	R/W R/W R/W R/W					
Function		Not Used	Not Used	Not Used			TH64			
Bits 4:0	64 Chip Data PN Code Correlator Threshold. This register sets the correlator threshold used in DSSS modes when the DATA CODE LENGTH (see TX_CFG_ADR) is set to 64. Typical applications configure TH64 = 0Eh.									

Mnemonic			RSSI_ADR				Address	0x13			
Bit	7	6	5	4	3	2	1	0			
Default	0	-	1	0	0	0	0	0			
Read/Write	R	-	R	R	R	R	R	R			
Function	SOP	Not Used	LNA			RSSI					
taken wheneve	gnal Strength Indie er RSSI_ADR is re cted, or the regist	ad. The content	s of this register	are not valid aft	er the device is	configured for re					
a "dummy" rea	o measure the ba d of this register, subsequent readir	the results of wh	ich should be d	liscarded. This "							
	SOP RSSI Readir detected. When c register.	•		•							
	LNA State. This b was disabled whe taken.				•	-					
	was taken. A large	ken. SSI Reading. This field indicates the instantaneous strength of the RF signal being received at the time that the RSSI reading as taken. A larger value indicates a stronger signal. The signal strength measured is for the RF signal on the configured chan- el, and is measured after the LNA stage.									

Mnemonic		EO	P_CTRL_ADR		0x14				
Bit	7	6	5	4	3	2	1	0	
Default	1	0	1	0	0 1 0		0	0	
Read/Write	R/W	R/W R/W		R/W	R/W	R/W	R/W	R/W	
Function	HEN		HINT			EOP			
	bit is set, then the of packet) conditio		register have no	effect. If the LE	N EN bit is clea	red, then this re	gister is used to c	configure how	
Bit 7	EOP Hint Enable. symbol periods se bytes. Use of this dition.	et by the HINT fi	eld and the last	two received by	tes match the	calculated CRC	16 for all previous	ly received	
Bits 6:4	,	P Hint Symbol Count. The minimum number of symbols of consecutive non-correlations at which the last two bytes are ecked against the calculated CRC16 to detect an EOP condition.							

Bits 4:0 EOP Symbol Count. An EOP condition is deemed to exist when the number of consecutive non-correlations is detected.

Mnemonic		CRC_SE	ED_LSB_ADR			Address	0x15	
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function				CRC SE	ED LSB			
The CRC16 seed use a randomly s transmitter/receiv Bits 7:0 CF	d allows differen selected CRC16 ver are using the RC16 Seed Leas	e same SOP_C	DDE_ADR code	s and channel.			a. If a transmitte er is 1/65535, ev	r and receiver en if the other

Mnemonic		CRC_SEE	ED_MSB_ADR				Address	0x16	
Bit	7	6	5	4	3	2	1	0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Function		CRC SEED MSB							
Bits 7:0 CF	RC16 Seed Mos	t Significant By	e. The MSB of t	the starting valu	e of the CRC1	6 calculation.			

Mnemonic		TX_CI	RC_LSB_ADR			Address	0x17			
Bit	7	6	5	4	3	2	1	0		
Default	-	-	-	-	-	-	-	-		
Read/Write	R	R	R	R	R	R	R	R		
Function		TX CRC LSB								
Bits 7:0	Calculated CRC10		of the CRC16 th	at was calculat	ed for the last t	ansmitted pack	et. This value is o	only valid after		

Mnemonic		TX_CR	C_MSB_ADR			Address	0x18			
Bit	7	6	5	4	3	2	1	0		
Default	-	-	-	-	-	-	-	-		
Read/Write	R	R	R	R	R	R	R	R		
Function		TX CRC MSB								
	Calculated CRC16 after packet transr			that was calcu	ated for the las	t transmitted pa	cket. This value i	s only valid		

Mnemonic		RX_C	RC_LSB_ADR		Address	0x19				
Bit	7	6	5	4	3	2	1	0		
Default	1	1	1	1	1	1	1	1		
Read/Write	R	R	R	R	R	R	R	R		
Function		RX CRC LSB								
	Received CRC16 field matched the				received packe	et. This value is v	alid whether or n	ot the CRC16		

Mnemonic		RX_CF	RC_MSB_ADR		0x1A					
Bit	7	6	5	4	3	2	1	0		
Default	1	1	1	1	1	1	1	1		
Read/Write	R	R	R	R	R	R	R	R		
Function		RX CRC MSB								
	Received CRC16 CRC16 field matc					ket. This value is	s valid whether o	or not the		

Mnemonic		TX_OFFS	ET_LSB_ADR	Address						
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	0	0	0		
Read/Write	RW R R R R R R									
Function		STRIM LSB								
of va tra th	fset the transmit lue reduces the ansmit frequency e transmit freque	frequency of the transmit freque y by 732.6 Hz. A ency by 1 MHz.	e device by up to ncy. A value of + value of 0x055 Typically, this re	• ±1.5 MHz. A p •1 increases the 5 increases the gister is loaded	ositive value ind transmit freque transmit freque with 0x55 durir	creases the trans ency by 732.6 H ency by 1 MHz; ng initialization.	number which m smit frequency, a z; a value of –1 c a value of 0xAAE Typically this feat a IF = 1 MHz the	nd a negative decreases the decreases ure is used to		

Synthesizer offset has no effect on receive frequency.

Mnemonic		TX_OFFSI	ET_MSB_ADR		Address					
Bit	7	6	5	4	3	2	1	0		
Default	-	-	-	-	0	0	0	0		
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W		
Function	Not Used Not Used Not Used STRIM MSB									
Bits 3:0 The most significant 4 bits of the synthesizer trim value. Typically, this register is loaded with 0x05 during initialization.										

Mnemonic			MODE_OV	ERRIDE_ADR				Address	0x1D
Bit		7	6	5	4	3	2	1	0
Default		0	0	0	0	0	-	-	0
Read/Write		W	W	W	W	W	-	-	W
Function		RSVD	RSVD	FRC SEN	FRC AWAKE Not Used RS				
Bits 7	Re	served. Do not	write a 1 to the	se bits.					
Bits 5	Manually Initiate Synthesizer. Setting this bit forces the synthesizer to start. Clearing this bit has no effect. For this bit to operate correctly, the oscillator must be running before this bit is set.								
Bits 4:3		Force Awake. Force the device out of sleep mode. Setting both bits of this field forces the oscillator to keep running at all times regardless of the END STATE setting. Clearing both of these bits disables this function.							

Bits 0 Reset. Setting this bit forces a full reset of the device. Clearing this bit has no effect.

Mnemonic		RX_OV	ERRIDE_ADR		0x1E					
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	0	0	-		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-		
Function	ACK RX	RXTX DLY	MAN RXACK	FRC RXDR	DIS CRC0	DIS RXCRC	ACE	Not Used		
This register p	provides the ability	to over-ride sor	ne automatic fea	atures of the de	vice.					
	When this bit is se given channel whe				uency rather th	an the receive s	ynthesizer frequ	lency for the		
Bits 6	When this bit is se	hen this bit is set and ACK EN is enabled, the transmission of the ACK packet is delayed by 20 μ s.								
Rite 5	Force Expected B	Expected Packet Type. When this bit is set, and the device is in receive mode, the device is configured to receive an								

Bits 5 Force Expected Packet Type. When this bit is set, and the device is in receive mode, the device is configured to receive an ACK packet at the data rate defined in TX_CFG_ADR.

Bits 4 Force Receive Data Rate. When this bit is set, the receiver will ignore the data rate encoded in the SOP symbol, and will receive data at the data rate defined in TX_CFG_ADR.

- Bits 3 Reject packets with a zero-seed CRC16. Setting this bit causes the receiver to reject packets with a zero-seed, and accept only packets with a CRC16 that matches the seed in CRC_SEED_LSB_ADR and CRC_SEED_MSB_ADR.
- Bits 2 The RX CRC16 checker is disabled. If packets with CRC16 enabled are received, the CRC16 will be treated as payload data and stored in the receive buffer.

Bits 1 Accept Bad CRC16. Setting this bit causes the receiver to accept packets with a CRC16 that do not match the seed in CRC_SEED_LSB_ADR and CRC_SEED_MSB_ADR. An ACK is to be sent regardless of the condition of the received CRC16.

Mnemonic		TX_OV	ERRIDE_ADR				Address	0x1F		
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Function	ACK TX	FRC PRE	RSVD	MAN TXACK	OVRD ACK	DIS TXCRC	RSVD	TX INV		
This register	provides the ability	to over-ride son	ne automatic fea	atures of the dev	vice.					
Bits 7	When this bit is set, the device uses the receive synthesizer frequency rather than the transmit synthesizer frequency for the									
	given channel when automatically entering transmit mode.									
Bits 6	Force Preamble.					•	• •	;		
	PREAMBLE_ADF	after TX GO is	s set. This mode	e is useful for so	me regulatory a	ipproval procedi	ures.			
Bits 5	Reserved. Do not	write a 1 to this	bit.							
Bits 4	Transmit ACK Pag	cket. When this	bit is set, the de	vice sends an A	CK packet whe	en TX GO is set.				
Bits 3	ACK Override. Us	e TX_CFG_ADI	R to determine t	he data rate and	d the CRC16 us	ed when transm	nitting an ACK pa	acket.		
Bits 2	Disable Transmit	Disable Transmit CRC16. When set, no CRC16 field is present at the end of transmitted packets.								
Bits 1	Reserved. Do not write a 1 to this bit.									
Bits 0	TX Data Invert. When this bit is set the transmit bitstream is inverted.									

	CLK_	OFFSET_ADR				Address	0x27	
7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	
W	W	W	W	W	W	W	W	
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD	
provides the ability	to over-ride son	ne automatic fea	atures of the dev	vice.	•			
Reserved. Do not	write a 1 to the	se bits.						
Force Receive Clo	rce Receive Clock							
Reserved. Do not	write a 1 to this	bit.						
	RSVD provides the ability Reserved. Do not Force Receive Clo	7 6 0 0 W W RSVD RSVD provides the ability to over-ride son Reserved. Do not write a 1 to thes Force Receive Clock	0 0 W W RSVD RSVD RSVD RSVD provides the ability to over-ride some automatic feat Reserved. Do not write a 1 to these bits.	7 6 5 4 0 0 0 0 W W W W RSVD RSVD RSVD RSVD provides the ability to over-ride some automatic features of the der Reserved. Do not write a 1 to these bits. Force Receive Clock	7 6 5 4 3 0 0 0 0 0 W W W W W RSVD RSVD RSVD RSVD provides the ability to over-ride some automatic features of the device. Reserved. Do not write a 1 to these bits. Force Receive Clock	7 6 5 4 3 2 0 0 0 0 0 0 0 W W W W W W W RSVD RSVD RSVD RSVD RSVD RSVD RSVD provides the ability to over-ride some automatic features of the device. Reserved. Do not write a 1 to these bits. Force Receive Clock	7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 W W W W W W W W RSVD RSVD RSVD RSVD RSVD RXF provides the ability to over-ride some automatic features of the device. Reserved. Do not write a 1 to these bits. Force Receive Clock	

		CLK_EN_ADR				Address	0x28
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
W	W	W	W	W	W	W	W
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD
			tures of the de	vice.		11	
eserved. Do not	write a 1 to the	se bits.					
	RSVD vides the ability	7 6 0 0 W W RSVD RSVD vides the ability to over-ride son	RSVD RSVD RSVD	7 6 5 4 0 0 0 0 W W W W RSVD RSVD RSVD RSVD vides the ability to over-ride some automatic features of the determined of the	7654300000WWWWWRSVDRSVDRSVDRSVDvides the ability to over-ride some automatic features of the device.	7 6 5 4 3 2 0 0 0 0 0 0 0 W W W W W W W RSVD RSVD RSVD RSVD RSVD RSVD RSVD vides the ability to over-ride some automatic features of the device. W W W W	7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 W W W W W W W W RSVD RSVD RSVD RSVD RSVD RSVD RXF

Bits 1 Force Receive Clock Enable. Typical application will set this bit during initialization.

Mnemonic		RX_	ABORT_ADR				Address	0x29	
Bit	7	6	5	4	3	2	1	0	
Default	0	0	0	0	0	0	0	0	
Read/Write	W	W	W	W	W	W	W	W	
Function	RSVD	RSVD	ABORT EN	RSVD	RSVD	RSVD	RSVD	RSVD	
This register p	provides the ability	to over-ride sor	ne automatic fea	atures of the de	vice.				
Bits 7:6	Reserved. Do not	write a 1 to the	se bits.						
Bits 5	Receive Abort En	eceive Abort Enable.							
Bits 4:0	Reserved. Do not	write a 1 to the	se bits.						

Mnemonic		AUTO_CA	L_TIME_ADR				Address	0x32
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	1	1
Read/Write	W	W	W	W	W	W	W	W
Function				AUTO_CAL	TIME_MAX			
This register prov	vides the ability	to over-ride som	ne automatic fea	atures of the de	vice.			
Bits 7:0 Au	ito Cal Time Max	k. Firmware mu	st write 3Ch to t	his register dur	ing initialization.			

Mnemonic		AUTO_CAL_	OFFSET_ADR				Address	0x35
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function		AUTO_CAL_OFFSET_MINUS_4						
This register pro	vides the ability	to over-ride son	ne automatic fea	atures of the de	vice.			
Bits 7:0 Au	uto Cal Time Ma	x. Firmware mu	st write 14h to tl	his register duri	ng initialization.			

Mnemonic		ANALO	G_CTRL_ADR				Address	0x39
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	ALL SLOW
This register p	rovides the ability	to over-ride son	ne automatic fea	atures of the de	vice.	•		
Bits 7:1	Reserved. Do not	write a 1 to the	se bits.					
	All Slow. When se set this bit when u		0	channels is the	same as for slo	w channels. It is	recommended	that firmware

9.1 Register Files

Files are written to or read from using non-incrementing burst read or write transactions. In most cases reading a file may be destructive; the file must be completely read, otherwise the contents may be altered.

Mnemonic	TX_BUFFER_ADR	Address	0x20
Length	16 Bytes	R/W	W
Default	0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		

The transmit buffer is a FIFO. Writing to this file adds a byte to the packet being sent. Writing more bytes to this file than the packet length in TX_LENGTH_ADR will have no effect, and these bytes will be lost after successful packet transmission. It is **NOT** possible to load two-eight byte packets into this register, and then transmit them sequentially by enabling the TX GO bit twice; this would have the effect of sending the first eight bytes twice.

Mnemonic	RX_BUFFER_ADR	Address	0x21
Length	16 Bytes	R/W	R
Default	0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		

The receive buffer is a FIFO. Received bytes may be read from this file register at any time that it is not empty, but when reading from this file register before a packet has been completely received care must be taken to ensure that error packets (for example with bad CRC16) are handled correctly.

When the receive buffer is configured to be overwritten by new packets (the alternative is for new packets to be discarded if the receive buffer is not empty), similar care must be taken to verify after the packet has been read from the buffer that no part of it was overwritten by a newly received packet while this file register is being read.

When the VLD EN bit in RX_CFG_ADR is set, the bytes in this file register alternate—the first byte read is data, the second byte is a valid flags for each bit in the first byte, the third byte is data, the fourth byte valid flags, etc. In SDR and DDR modes the valid flag for a bit is set if the correlation coefficient for the bit exceeded the correlator threshold, and is cleared if it did not. In 8DR mode, the MSB of a valid flags byte indicates whether or not the correlation coefficient of the corresponding received symbol exceeded the threshold. The seven LSBs contain the number of erroneous chips received for the data.

Mnemonic	SOP_CODE_ADR	Address	0x22
Length	8 Bytes	R/W	R/W
Default	0x17FF9E213690C782		

When using 32 chip SOP_CODE_ADR codes, only the first four bytes of this register are used; in order to complete the file write process, these four bytes must be followed by four bytes of "dummy" data. However, a class of codes known as "multiplicative codes" may be used; there are 64 chip codes with good auto-correlation and cross-correlation properties where the least significant 32 chips themselves have good autocorrelation and cross-correlation properties when used as 32-chip codes. In this case the same eight-byte value may be loaded into this file and used for both 32 chip and 64 chip SOP symbols.

When reading this file, all eight bytes must be read; if fewer than eight bytes are read from the file, the contents of the file will have been rotated by the number of bytes read. This applies to writes, as well.

Recommended SOP Codes:

0x91CCF8E291CC373C
0x0FA239AD0FA1C59B
0x2AB18FD22AB064EF
0x507C26DD507CCD66
0x44F616AD44F6E15C
0x46AE31B646AECC5A
0x3CDC829E3CDC78A1
0x7418656F74198EB9
0x49C1DF6249C0B1DF
0x72141A7F7214E597

Mnemonic	DATA_CODE_ADR	Address	0x23
Length	16 Bytes	R/W	R/W
Default	0x02F9939702FA5CE3012BF1DB0132BE6F		

This file is ignored when using the device in 1-Mbps GFSK mode. In 64-SDR mode, only the first eight bytes are used; in order to complete the file write process, these eight bytes must be followed by eight bytes of "dummy" data. In 32-SDR mode, only four bytes are used, and in 32-DDR mode only eight bytes are used. In 64-DDR and 8DR modes, all sixteen bytes are used. Certain sixteen-byte sequences have been calculated that provide excellent auto-correlation and cross-correlation properties, and it is recommended that such sequences be used; the default value of this register is one such sequence. In typical applications, all devices use the same DATA_CODE_ADR codes, and devices and systems are addressed by using different SOP_CODE_ADR codes; in such cases it may never be necessary to change the contents of this register from the default value.

When reading this file, all sixteen bytes must be read; if fewer than sixteen bytes are read from the file, the contents of the file will have been rotated by the number of bytes read. This applies to writes, as well.

Typical applications should use the default code.

Mnemonic	PREAMBLE_ADR	Address	0x24
Length	3 Bytes	R/W	R/W
Default	0x333302		

1st byte – The number of repetitions of the preamble sequence that are to be transmitted. The preamble may be disabled by writing 0x00 to this byte.

2nd byte - Least significant eight chips of the preamble sequence

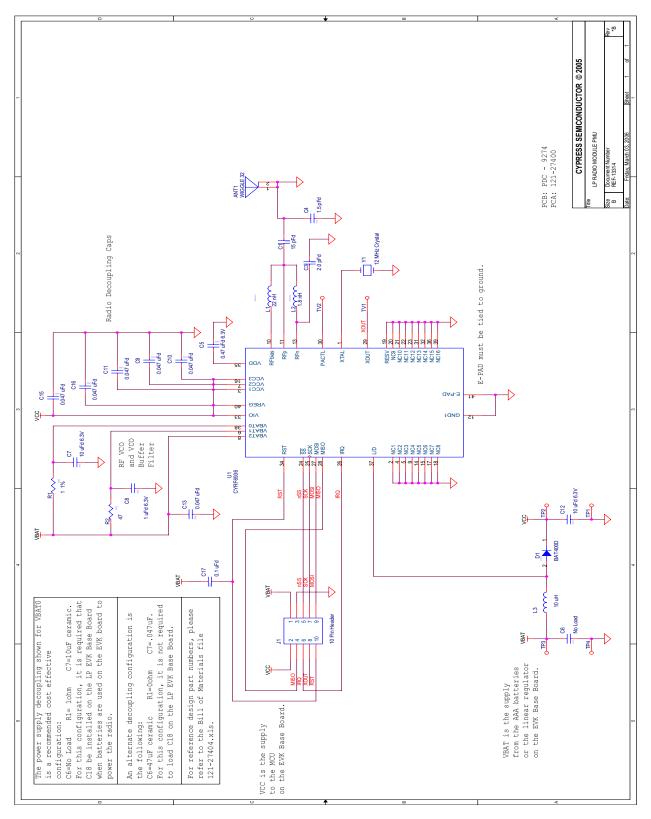
3rd byte - Most significant eight chips of the preamble sequence

If using 64-SDR to communicate with CYWUSB69xx devices, set number of repetitions to four for optimum performance

When reading this file, all three bytes must be read; if fewer than three bytes are read from the file, the contents of the file will have been rotated by the number of bytes read. This applies to writes, as well.

Mnemonic	MFG_ID_ADR	Address	0x25
Length	6 Bytes	R	R
Default	NA		

1st byte - 4 bits version + 2 bits vendor ID + high 2 bits of Year


2nd through 6th bytes: Manufacturing ID for the device.

To minimize ~190µA of current consumption (default), execute a "dummy" single-byte SPI write to this address with a zero data stage after the contents have been read. Non-zero to enable reading of fuses. Zero to disable reading fuses.

10.0 Recommended Radio Circuit Schematic

This circuit is recommended for systems where V_{BAT} may fall below 2.4V.

11.0 Absolute Maximum Ratings

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied 55°C to +125°C
Supply Voltage on any power supply pin relative to $\rm V_{SS}\mathchar`-0.3V$ to +3.9V
DC Voltage to Logic Inputs^{[5]}0.3V to V_{IO} +0.3V
DC Voltage applied to Outputs in High-Z State –0.3V to $\rm V_{IO}$ +0.3V
Static Discharge Voltage (Digital) ^[6] >2000V
Static Discharge Voltage (RF) ^[6] 1100V
Latch-up Current +200 mA, -200 mA

12.0 Operating Conditions

V _{CC}	2.4V to 3.6V
V _{IO}	1.8V to 3.6V
V _{BAT}	1.8V to 3.6V
T _A (Ambient Temperature Under Bias)	0°C to +70°C
Ground Voltage	0V
F _{OSC} (Crystal Frequency)	12 MHz ±30 ppm

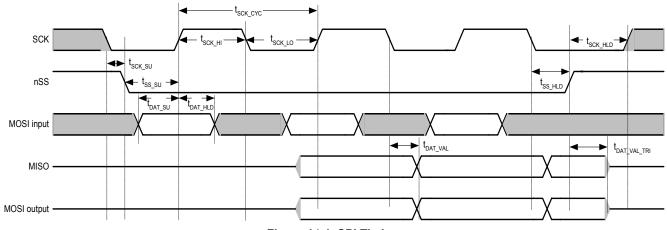
13.0 DC Characteristics (T = 25°C, V_{BAT} = 2.4V, PMU disabled, f_{OSC} = 12.000 MHz)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{BAT}	Battery Voltage	0–70°C	1.8		3.6	V
V _{REG} ^[7]	PMU Output Voltage	2.4V mode	2.4	2.43		V
V _{REG} ^[7]	PMU Output Voltage	2.7V mode	2.7	2.73		V
V _{IO}	V _{IO} Voltage		1.8		3.6	V
V _{CC}	V _{CC} Voltage	0–70°C	2.4		3.6	V
V _{OH1}	Output High Voltage condition 1	At I _{OH} = -100.0 μA	V _{IO} – 0.1	V _{IO}		V
V _{OH2}	Output High Voltage condition 2	At I _{OH} = -2.0 mA	$V_{10} - 0.4$	V _{IO}		V
V _{OL}	Output Low Voltage	At I _{OL} = 2.0 mA		0	0.4	V
V _{IH}	Input High Voltage		0.76V _{IO}		V _{IO}	V
V _{IL}	Input Low Voltage		0		$0.24V_{IO}$	V
IIL	Input Leakage Current	0 < V _{IN} < V _{IO}	-1	0.26	+1	μA
C _{IN}	Pin Input Capacitance	except XTAL, RF _N , RF _P , RF _{BIAS}		3.5	10	pF
I _{CC} (GFSK) ^[8]	Average TX Icc, 1Mbps, slow channel	PA = 5, 2-way, 4-bytes/10 ms		0.87		mA
I _{CC} (32-8DR) ^[8]	Average TX Icc, 250kbps, fast channel	PA = 5, 2-way, 4-bytes/10 ms		1.2		mA
I _{SB}	Sleep Mode Icc			0.8	10	μA
I _{SB}	Sleep Mode Icc	PMU enabled		31.4		μA
IDLE I _{CC}	Radio off, XTAL Active	XOUT disabled		1.0		mA
I _{synth}	I _{CC} during Synth Start			8.4		mA
TX I _{CC}	I _{CC} during Transmit	PA = 5 (–5 dBm)		20.8		mA
TX I _{CC}	I _{CC} during Transmit	PA = 6 (0 dBm)		26.2		mA
TX I _{CC}	I _{CC} during Transmit	PA = 7 (+4 dBm)		34.1		mA
RX I _{CC}	I _{CC} during Receive	LNA off, ATT on		18.4		mA
RX I _{CC}	I _{CC} during Receive	LNA on, ATT off		21.2		mA
Boost Eff	PMU Boost Converter Efficiency	V _{BAT} = 2.5V, V _{REG} = 2.73V, I _{LOAD} = 20 mA		83		%
I _{LOAD_EXT}	Average PMU External Load current	V _{BAT} = 1.8V, V _{REG} = 2.73V, RX Mode			15	mA

Notes:

5. It is permissible to connect voltages above V_{IO} to inputs through a series resistor limiting input current to 1 mA. AC timing not guaranteed.

6. 7. Human Body Model (HBM). V_{REG} depends on battery input voltage.


Includes current drawn while starting crystal, starting synthesizer, transmitting packet (including SOP and CRC16), changing to receive mode, and receiving ACK handshake. Device is in sleep except during this transaction. 8.

AC Characteristics ^[9] 14.0

Table 14-1. SPI Interface^[10]

Parameter	Description	Min.	Тур.	Max.	Unit
t _{sck_cyc}	SPI Clock Period	238.1			ns
t _{scк_н}	SPI Clock High Time	100			ns
t _{sck_Lo}	SPI Clock Low Time	100			ns
t _{DAT_SU}	SPI Input Data Set-up Time	25			ns
t _{DAT_HLD}	SPI Input Data Hold Time	10			ns
t _{DAT_VAL}	SPI Output Data Valid Time	0		50	ns
t _{DAT_VAL_TRI}	SPI Output Data Tri-state (MOSI from Slave Select Deassert)			20	ns
t _{SS_SU}	SPI Slave Select Set-up Time before first positive edge of SCK ^[11]	10			ns
t _{SS_HLD}	SPI Slave Select Hold Time after last negative edge of SCK	10			ns
t _{SS_PW}	SPI Slave Select Minimum Pulse Width	20			ns
t _{scк_su}	SPI Slave Select Set-up Time	10			ns
t _{SCK_HLD}	SPI SCK Hold Time	10			ns
t _{RESET}	Minimum RST pin pulse width	10			ns

Figure 14-1. SPI Timing

Notes:

9. AC values are not guaranteed if voltage on any pin exceed V_{IO} .

C_{LOAD} = 30 pF.
 SCK must start low at the time nSS goes low, otherwise the success of SPI transactions are not guaranteed.

15.0 RF Characteristics

Table 15-1. Radio Parameters

Parameter Description	Conditions	Min.	Тур.	Max.	Unit
RF Frequency Range	Note 12	2.400		2.497	GHz
Receiver (T = 25°C, V _{CC} = 3.0V, f _{OSC} = 12.000 MHz, BER < 10 ⁻					•
Sensitivity 125kbps 64-8DR	BER 1E-3		-97		dBm
Sensitivity 250-kbps 32-8DR	BER 1E-3		-93		dBm
Sensitivity	CER 1E-3	-80	-87		dBm
Sensitivity GFSK	BER 1E-3		-84		dBm
LNA gain			22.8		dB
ATT gain			-31.7		dB
Maximum Received Signal	LNA On	-15	-6		dBm
RSSI value for PWR _{in} –60 dBm	LNA On		21		Count
RSSI slope			1.9		dB/Count
Interference Performance (CER 1E-3)					
Co-channel Interference rejection Carrier-to-Interference (C/I)	C = -60 dBm,		9		dB
Adjacent (±1 MHz) channel selectivity C/I 1 MHz	C = -60 dBm		3		dB
Adjacent (±2 MHz) channel selectivity C/I 2 MHz	C = -60 dBm		-30		dB
Adjacent (\geq 3 MHz) channel selectivity C/I \geq 3 MHz	C = –67 dBm		-38		dB
Out-of-Band Blocking 30 MHz–12.75 MHz ^[13]	C = –67 dBm		-30		dBm
Intermodulation	C = –64 dBm, ∆f = 5,10 MHz		-36		dBm
Receive Spurious Emission					
800 MHz	100-kHz ResBW		-79		dBm
1.6 GHz	100-kHz ResBW		-71		dBm
3.2 GHz	100-kHz ResBW		-65		dBm
Transmitter (T = 25°C, V _{CC} = 3.0V, f _{OSC} = 12.000 MHz)					
Maximum RF Transmit Power	PA = 7	+2	4	+6	dBm
Maximum RF Transmit Power	PA = 6	-2	0	+2	dBm
Maximum RF Transmit Power	PA = 5	-7	-5	-3	dBm
Maximum RF Transmit Power	PA = 0		-35		dBm
RF Power Control Range			39		dB
RF Power Range Control Step Size	seven steps, monotonic		5.6		dB
Frequency Deviation Min	PN Code Pattern 10101010		270		kHz
Frequency Deviation Max	PN Code Pattern 11110000		323		kHz
Error Vector Magnitude (FSK error)	>0 dBm		10		%rms
Occupied Bandwidth	–6 dBc, 100-kHz ResBW	500	876		kHz
Transmit Spurious Emission (PA = 7)	,				
In-band Spurious Second Channel Power (±2 MHz)			-38		dBm
In-band Spurious Third Channel Power (\geq 3 MHz)			-44		dBm
Non-Harmonically Related Spurs (8.000GHz)			-38		dBm
Non-Harmonically Related Spurs (1.6GHz)			-34		dBm
Non-Harmonically Related Spurs (3.2GHz)			-47		dBm
Harmonic Spurs (Second Harmonic)		+	-43		dBm

Notes:

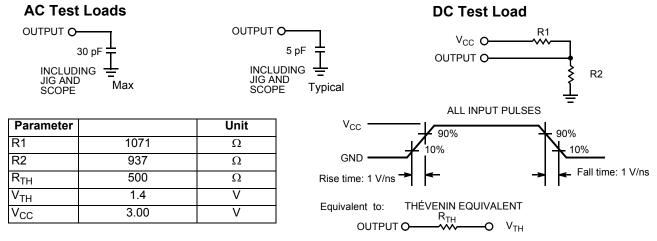

Subject to regulation.
 Exceptions F/3 & 5C/3.

Table 15-1. Radio Parameters (continued)

Parameter Description	Conditions	Min.	Тур.	Max.	Unit
Harmonic Spurs (Third Harmonic)			-48		dBm
Fourth and Greater Harmonics			-59		dBm
Power Management (Crystal PN# eCERA GF-120000	8)				
Crystal start to 10ppm			0.7	1.3	ms
Crystal start to IRQ	XSIRQ EN = 1		0.6		ms
Synth Settle	Slow channels			270	μs
Synth Settle	Medium channels			180	μs
Synth Settle	Fast channels			100	μs
Link turn-around time	FAST TURN EN = 1, GFSK			30	μs
Link turn-around time	FAST TURN EN = 1, 250 kbps			62	μs
Link turn-around time	FAST TURN EN = 1, 125 kbps			94	μs
Link turn-around time	FAST TURN EN = 1, <125 kbps			31	μs
Max. packet length	all modes except 64-DDR			40	bytes
Max. packet length	64-DDR			16	bytes

16.0 AC Test Loads and Waveforms for Digital Pins

Figure 16-1. AC Test Loads and Waveforms for Digital Pins

17.0 Ordering Information

Table 17-1. Ordering Information

Part Number	Radio	Package Name	Package Type	Operating Range
CYRF6936-40LFXC	Transceiver	40 QFN	40 Quad Flat Package No Leads Lead-Free	Commercial

18.0 Package Description

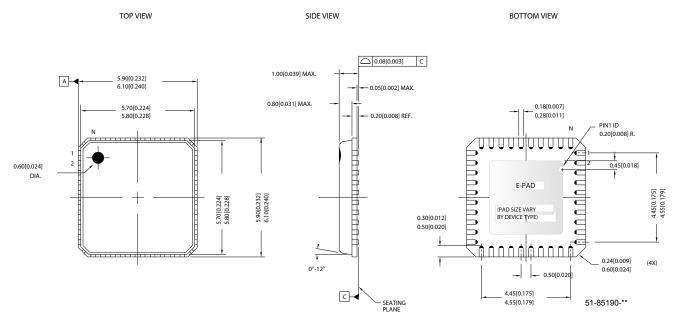


Figure 18-1. 40-pin Lead-Free QFN 6x6 mm LY40

The recommended dimension of the PCB pad size for the E-PAD underneath the QFN is 3.5 mm × 3.5 mm (width x length).

This document is subject to change, and may be found to contain errors of omission or changes in parameters. For feedback or technical support regarding Cypress WirelessUSB products please contact Cypress at www.cypress.com. WirelessUSB, PSoC, and enCoRe are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

DEV		leave Data	Orig. of	Description of Change
REV.	ECN NO.	Issue Date	Change	Description of Change
	307437	See ECN	TGE	New data sheet
*A	377574	See ECN	TGE	Preliminary release— - updated Section 1.0 - Features - updated Section 2.0 - Applications - added Section 3.0 - Applications Support - updated Section 4.0 - Functional Descriptions - updated Section 5.0 - Pin Description - added Figure 5-1 - updated Section 6.0 - Functional Overview - added Section 7.0 - Functional Block Overview - added Section 9.0 - Register Descriptions - updated Section 10.0 - Absolute Maximum Ratings - updated Section 11.0 - Operating Conditions - updated Section 13.0 - AC Characteristics - updated Section 14.0 - RF Characteristics - added Section 16.0 - Ordering Information
*B	398756	See ECN	TGE	ES-10 update- - changed part no. - updated Section 9.0 - Register Descriptions - updated Section 12.0 - DC Characteristics - updated Section 14.0 - RF Characteristics
*C	412778	See ECN	TGE	ES-10 update- - updated Section 4.0 - Functional Descriptions - updated Section 5.0 - Pin Descriptions - updated Section 6.0 - Functional Overview - updated Section 7.0 - Functional Block Overview - updated Section 9.0 - Register Descriptions - updated Section 10.0 - Absolute Maximum Ratings - updated Section 11.0 - Operating Conditions - updated Section 14.0 - RF Characteristics
*D	435578	See ECN	TGE	 - updated Section 1.0 - Features - updated Section 5.0 - Pin Descriptions - updated Section 6.0 - Functional Overview - updated Section 7.0 - Functional Block Overview - updated Section 9.0 - Register Descriptions - added Section 10.0 - Recommended Radio Circuit Schematic - updated Section 11.0 - Absolute Maximum Ratings - updated Section 12.0 - Operating Conditions - updated Section 13.0 - DC Characteristics - updated Section 14.0 - AC Characteristics - updated Section 15.0 - RF Characteristics
*E	460458	See ECN	BOO	Final datasheet - removed "Preliminary" notation