
SK 20 GD 063

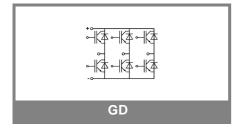
SEMITOP® 2

IGBT Module

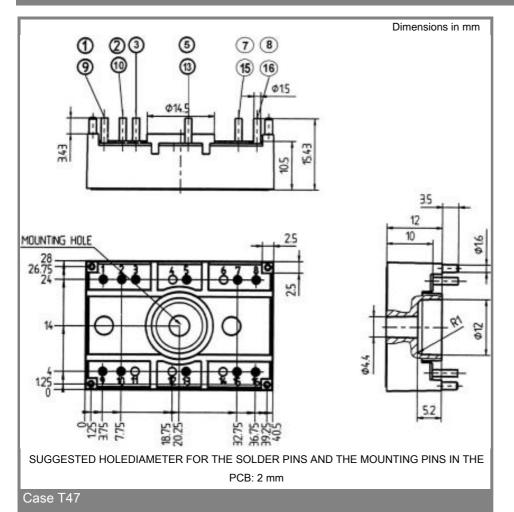
SK 20 GD 063

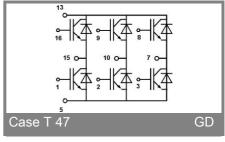
Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute Maximum Ratings		T_s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		600	V					
V_{GES}		± 20	V					
I _C	T _s = 25 (80) °C;	24 (17)	Α					
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	48 (34)	Α					
T _j	·	- 40 + 150	°C					
Inverse / Freewheeling CAL diode								
I _F	$T_s = 25 (80) ^{\circ}C;$	22 (15)	Α					
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	44 (30)	Α					
T _j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

Characteristics		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
V _{CE(sat)}	I _C = 20 A, T _j = 25 (125) °C		2,1 (2,2)		V		
V _{GE(th)}	$V_{CE} = V_{GE}; I_{C} = 0,0005 A$	4,5	5,5	6,5	V		
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		1,1	4.7	nF		
$R_{th(j-s)}$	per IGBT			1,7	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		35		ns		
t _r	$I_C = 15 \text{ A}, T_j = 125 ^{\circ}\text{C}$		50		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 68 \Omega$		250 20		ns ns		
t _f	Industive lead						
E _{on} + E _{off}	Inductive load		1,11		mJ		
Inverse / Freewheeling CAL diode							
	I _F = 10 A; T _j = 25 (125) °C		1,45 (1,4)	,	V		
$V_{(TO)}$	$T_{j} = (125) ^{\circ}C$		(0,85)	(0,9)	V		
r _T	$T_{j} = (125) ^{\circ}C$		(55)	(80)	mΩ		
$R_{th(j-s)}$				2,3	K/W		
	under following conditions:						
I _{RRM}	$I_F = 10 \text{ A; } V_R = -300 \text{ V}$		6,5		A		
Q_{rr}	dI _F /dt = -200 A/μs		1		μC		
E _{off}	V _{GE} = 0 V; T _j = 125 °C		0,1		mJ		
Mechanic	al data						
M1	mounting torque			2	Nm		
w			21		g		
Case	SEMITOP® 2		T 47				

SK 20 GD 063

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.