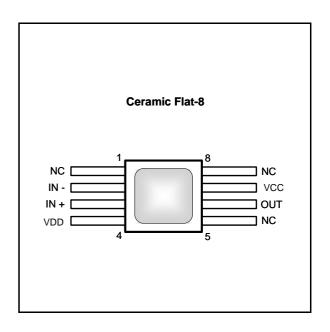


RHF43B

RAD-hardened precision bipolar single operational amplifier

Features


- High immunity to radiations, 300kRad TID; SEL immune at 68MeV/cm²/mg LET ions.
- Rail-to-rail input/output
- 8MHz gain bandwidth at 16V
- Stable for gain ≥ 5
- Low input offset voltage: 100µV typ
- Supply current: 2.2mA typ
- Operating from 3V to 16V
- Input bias current: 30nA typ
- ESD internal protection ≥ 2kV
- Latch-up immunity: 200mA
- Soon RHA QML-V qualified with smd n° 5962-062xx

Description

The RHF43B is a precision bipolar operational amplifier available in hermetic 8-pin flat package and in die form. In addition to its low offset voltage, rail-to-rail feature, wide supply voltage, the RHF43B is designed for increased tolerance to radiation. Its intrinsic ELDRS-free rad-hard design allows this product to be used in space environment and in applications operating in harsh environments.

Applications

- Space probes and satellites
- Defense systems
- Scientific instrumentation
- Nuclear systems

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit	
V _{CC}	Supply voltage ⁽¹⁾	18 ±9	V	
V _{id}	Differential input voltage (2)	±1.2	V	
V _{in}	Input voltage range ⁽³⁾	V _{DD} -0.3 to 16	V	
I _{IN}	Input current	45	mA	
T _{stg}	Storage temperature	-65 to +150	°C	
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾⁽⁵⁾	125	°C/W	
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾⁽⁵⁾	80	°C/W	
Тj	Maximum junction temperature	150	°C	
ESD	HBM: human body model ⁽⁶⁾	2	kV	
	Latch-up immunity	200	mA	
	Lead temperature (soldering, 10 sec)	260	°C	
Radiation	related parameters			
	Low dose rate of 0.01 rad.sec ⁻¹	300	kRad	
	High dose rate of 50-300 rad.sec ⁻¹	300	kRad	
	Heavy ion latch-up (SEL) immune with heavy ions characterized by:	68	MeV.cm ⁻² .mg	
	Neutron immunity	2 ⁺¹⁴	n.cm ⁻²	

Table 1. Absolute maximum ratings (AMR)

1. All values, except differential voltage are with respect to network terminal.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

3. The magnitude of input and output terminal must never exceed V_{CC}+0.3V.

4. Short-circuits can cause excessive heating and destructive dissipation.

5. R_{th} are typical values.

6. Human body model: 100pF discharged through a $1.5 k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

Table 2.Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 16	V
V _{icm}	Common mode input voltage range	V_{DD} to V_{CC}	V
T _{oper}	Operating free air temperature range	-55 to +125	°C

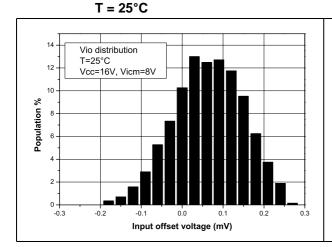
2 Electrical characteristics

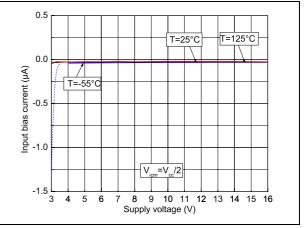
Table 3. $V_{CC} = +16V$, $V_{DD} = 0V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ}C$, R_L connected to $V_{CC}/2$ (unless
otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
DC perfor	mance					
	011 1	T= 25°C		100	300	
V _{io}	Offset voltage	T _{min} < T _{op} < T _{max}			500	μV
DVio	Input offset voltage drift			1		μV/°C
I _{ib}	Input bias current	$V_{icm} = V_{CC}/2, T = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		30	60 100	nA
DI _{ib}	Input offset current temperature drift			100		pA/°C
I _{io}	Input offset current $(V_{out} = V_{CC}/2)$	$V_{icm} = V_{CC}/2, T = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	15 35	nA
CMR	Common mode rejection ratio	0 < V _{icm} < 16V T _{min} < T _{op} < T _{max}	72 72	110		dB
SVR	Supply rejection ratio	$3V < V_{CC} < 16V, V_{icm} = V_{CC}/2$ $T_{min} < T_{op} < T_{max}$	90 80	120		dB
A _{VD}	Large signal voltage gain	$\begin{aligned} R_{L} &= 10 k \Omega \; V_{out} &= 0.5 V \; to \; 15.5 V \\ T_{min} &< T_{op} < T_{max} \end{aligned}$	74 60	85		dB
Maria	High level output voltage		15.7 15.6	15.8		V
V _{OH}	nigh level output voltage		15.9 15.8	15.96		V
M		$ \begin{array}{l} R_{L} = 1 \mathrm{k} \Omega \text{ connected to } V_{CC} / 2 \\ T_{min.} < T_{op} < T_{max.} \end{array} $		0.1	0.2 0.3	V
V _{OL}	Low level output voltage			0.04	0.06 0.1	V
1.	Output sink current	V _{out} = V _{CC} T _{min} < T _{op} < T _{max}	20 15	30		mA
l _{out}	Output source current	V _{out} = V _{DD} T _{min} < T _{op} < T _{max}	15 10	25		
I _{CC}	Supply current	No load T _{min} < T _{op} < T _{max}	_	2.5	2.9	mA
AC perfor	mance					
GBP	Gain bandwidth product	$\label{eq:RL} \begin{split} R_L &= 1 k \Omega, \ C_L = 100 \text{pF}, \ \text{f} = 100 \text{kHz} \\ T_{\text{min}} &< T_{\text{op}} < T_{\text{max}} \end{split}$	6 3.5	8		MHz
F_{u}	Unity gain frequency	R_L = 1kΩ C_L = 100pF		5		MHz
φm	Phase margin	$R_{L} = 1k\Omega, C_{L} = 100pF, G=5$		50		Degrees

Table 3.	V_{CC} = +16V, V_{DD} = 0V, V_{icm} = $V_{CC}/2$, T_{amb} = 25°C, R_L connected to $V_{CC}/2$ (unless
	otherwise specified) (continued)

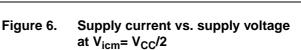
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
SR	Slew rate	$R_L = 1k\Omega, C_L = 100pF$ $T_{min} < T_{op} < T_{max}$	2 1.7	3		V/µs
e _n	Equivalent input noise voltage	f = 1kHz		8		$\frac{nV}{\sqrt{Hz}}$
THD+e _n	Total harmonic distortion	$V_{out} = (V_{CC}-1V)/5, G= -5.1,$ $V_{icm}=V_{CC}/2$		0.01		%




Table 4.	V_{CC} = +3V, V_{DD} = 0V, V_{icm} = $V_{CC}/2$, T_{amb} = 25°C, R_L connected to $V_{CC}/2$ (unles	SS
	otherwise specified)	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
DC perfor	mance					
		T=25°C		100	300	
V _{io}	Offset voltage	T _{min} < T _{op} < T _{max}			500	μV
DVio	Input offset voltage drift			1		μV/°C
I _{ib}	Input bias current	V_{CC} = 4V, V_{icm} = V_{CC} /2, T= 25°C T _{min} < T _{op} < T _{max}		30	60 100	nA
DI _{ib}	Input offset current temperature drift	V_{CC} = 4V, V_{icm} = $V_{CC}/2$		100		pA/°C
I _{io}	Input offset current $(V_{out} = V_{cc}/2)$	$V_{CC} = 4V$, $V_{icm} = V_{CC}/2$, $T = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	15 35	nA
CMR	Common mode rejection ratio	$0 < V_{icm} < 3V$ $T_{min} < T_{op} < T_{max}$	72 72	90		dB
A _{VD}	Large signal voltage gain	$\begin{split} R_{L} &= 10 k \Omega, V_{out} \text{=} 0.5 V \text{ to } 2.5 V \\ T_{min} &< T_{op} < T_{max} \end{split}$	74 60	85		dB
V	High level output voltage	$ R_L = 1 k \Omega \text{ connected to } V_{CC}/2 T_{min} < T_{op} < T_{max} $	2.9 2.8	2.95		V
V _{OH}	nigh level ouput voltage	R_L = 10kΩ connected to V _{CC} /2 T _{min} < T _{op} < T _{max}	2.94 2.9	2.98		V
V	Low level output voltage	R_L = 1kΩ connected to V _{CC} /2 T _{min} < T _{op} < T _{max}		0.05	0.1 0.2	V
V _{OL}	Low level output voltage	R_L = 10kΩ connected to V _{CC} /2 T _{min} < T _{op} < T _{max}		0.02	0.06 0.1	V
I	Output sink current	$V_{out} = V_{CC}$ $T_{min} < T_{op} < T_{max}$	20 15	30		mA
I _{out}	Output source current	$V_{out} = V_{DD}$ $T_{min} < T_{op} < T_{max}$	15 10	25		
I _{CC}	Supply current per amplifier	No load T _{min} < T _{op} < T _{max}		2.2	2.6	mA
AC perfor	mance					
GBP	Gain bandwidth product	R_L = 1kΩ C_L = 100pF, f = 100kHz T _{min} < T _{op} < T _{max}	6 3.5	7.5		MHz
Fu	Unity gain frequency	$R_L = 1k\Omega$, $C_L = 100$ pF		5		MHz
φm	Phase margin	$R_{L} = 1k\Omega, C_{L} = 100pF, G=5$		50		Degrees
SR	Slew rate		2 1.7	2.7		V/µs
e _n	Equivalent input noise voltage	f = 1kHz		8		$\frac{nV}{\sqrt{Hz}}$
THD+e _n	Total harmonic distortion	$V_{out} = (V_{CC}-1V)/5, G = -5.1, V_{icm} = V_{CC}/2$		0.01		%

Figure 1.


RHF43B

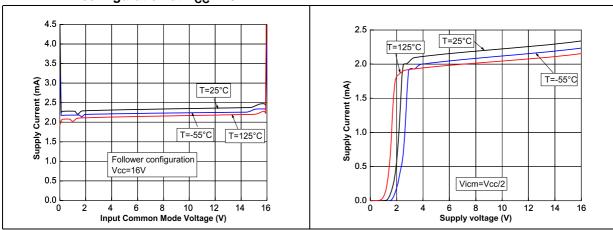

57

Figure 3. Input bias current vs. input common Figure 4. mode voltage at V_{CC}= 3V

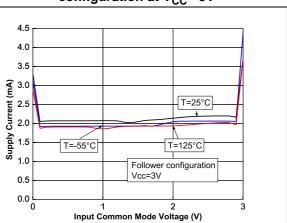

1.0 4.5 4.0 0.5 3.5 Input bias current (µA) 0.0 3.0 2.5 2.0 1.5 1.0 T=125°C -0.5 T=25°C -1.0 T=-55°C 1.0 -1.5 T=-55°C V_{cc}=3V Vcc=3V 0.5 -2.0 └─ 0.0 0.0 L 0 0.5 1.0 1.5 2.0 2.5 3.0 Input common mode voltage (V)

Figure 5. Supply current vs. input common mode voltage in follower configuration at V_{CC}= 16V

Supply current vs. input common mode voltage in follower configuration at V_{CC} = 3V

57

Figure 7. Output current vs.supply voltage at Figure 8. Output current vs. output voltage at $V_{icm} = V_{CC}/2$ $V_{CC} = 3V$

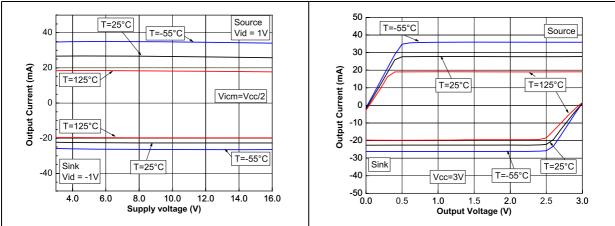
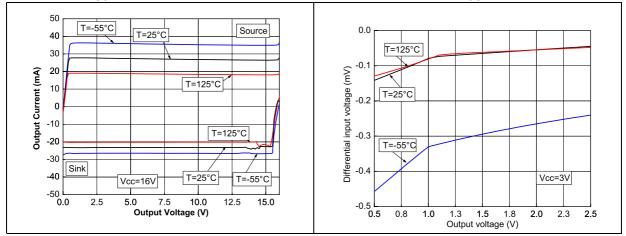
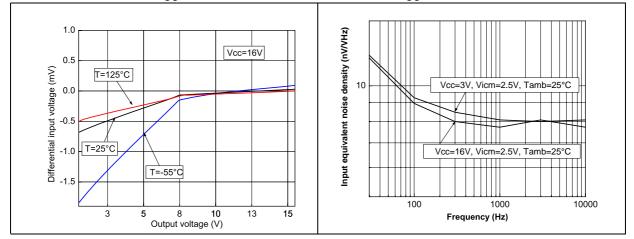
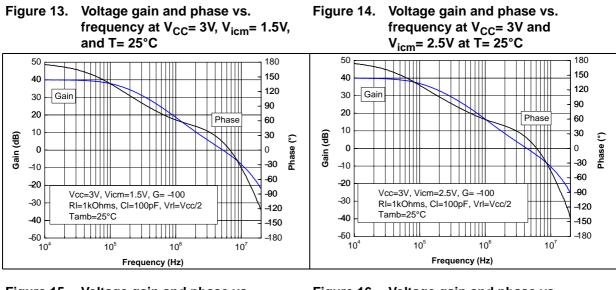
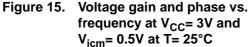
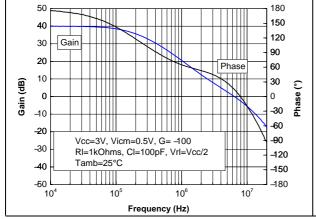
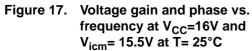
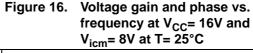
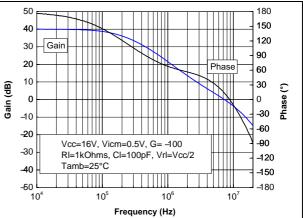


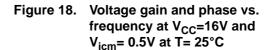
Figure 9. Output current vs. output voltage at Figure 10. Differential input voltage vs. output voltage at V_{CC}= 16V voltage at V_{CC}= 3V

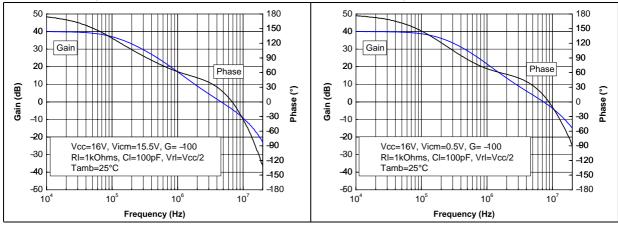






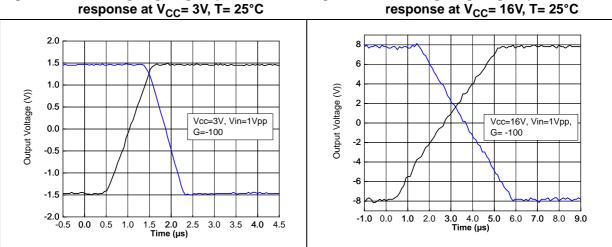

Figure 11. Differential input voltage vs. output Figure 12. Noise vs. frequency at V_{CC} = 3V and voltage at V_{CC} = 16V V_{CC} = 16V











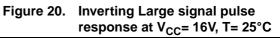


Figure 19. Inverting large signal pulse response at V_{CC}= 3V, T= 25°C

3 Package information

1						
				Г===		V
1		E3	E2	→ < ^{E3}	-	1
		1		8		
						*
↓						
		4		5		
\uparrow	L	*	E	X	L	
;				I		
		Inches			Millimeters	
Symbol	Min	Inches	Мах		Millimeters	
Symbol	 	Nom	Max .104	Min	Nom	Max
	Min .088 .015		Max .104 .019	Min 2.24	Nom 2.44	Max 2.64
Symbol	.088	Nom .096	.104	Min	Nom	Max
Symbol A b c D	.088 .015	Nom .096 .017	.104 .019	Min 2.24 0.38	Nom 2.44 0.43	Max 2.64 0.48
Symbol A b C D E	.088 .015 .004 .250 .250	Nom .096 .017 .005 .255 .255	.104 .019 .006 .260 .260	Min 2.24 0.38 0.10 6.35 6.35	Nom 2.44 0.43 0.13 6.48 6.48	Max 2.64 0.48 0.16 6.61 6.61
Symbol A b C D E E2	.088 .015 .004 .250 .250 .170	Nom .096 .017 .005 .255 .255 .175	.104 .019 .006 .260 .260 .180	Min 2.24 0.38 0.10 6.35 6.35 4.32	Nom 2.44 0.43 0.13 6.48 6.48 4.45	Max 2.64 0.48 0.16 6.61 6.61 4.58
Symbol A b C D E	.088 .015 .004 .250 .250	Nom .096 .017 .005 .255 .255 .175 .040	.104 .019 .006 .260 .260	Min 2.24 0.38 0.10 6.35 6.35	Nom 2.44 0.43 0.13 6.48 6.48 4.45 1.01	Max 2.64 0.48 0.16 6.61 6.61
Symbol A b C D E E2	.088 .015 .004 .250 .250 .170 .035	Nom .096 .017 .005 .255 .255 .175	.104 .019 .006 .260 .260 .180	Min 2.24 0.38 0.10 6.35 6.35 4.32 0.88	Nom 2.44 0.43 0.13 6.48 6.48 4.45	Max 2.64 0.48 0.16 6.61 6.61 4.58
Symbol A b c D E E2 E3 e L	.088 .015 .004 .250 .250 .170 .035 .335	Nom .096 .017 .255 .255 .175 .040 .050	.104 .019 .006 .260 .260 .180 .045	Min 2.24 0.38 0.10 6.35 6.35 4.32 0.88 8.5	Nom 2.44 0.43 0.13 6.48 6.48 4.45 1.01 1.27	Max 2.64 0.48 0.16 6.61 6.61 4.58 1.14 9.6
Symbol A b c D E E2 E3 e L Q	.088 .015 .004 .250 .250 .170 .035 .335 .026	Nom .096 .017 .005 .255 .255 .175 .040 .050	.104 .019 .006 .260 .260 .180 .045	Min 2.24 0.38 0.10 6.35 6.35 4.32 0.88	Nom 2.44 0.43 0.13 6.48 6.48 4.45 1.01 1.27 - 0.79	Max 2.64 0.48 0.16 6.61 6.61 4.58 1.14 9.6 0.92
Symbol A b c D E E2 E3 e L	.088 .015 .004 .250 .250 .170 .035 .335	Nom .096 .017 .255 .255 .175 .040 .050	.104 .019 .006 .260 .260 .180 .045	Min 2.24 0.38 0.10 6.35 6.35 4.32 0.88 8.5	Nom 2.44 0.43 0.13 6.48 6.48 4.45 1.01 1.27	Max 2.64 0.48 0.16 6.61 6.61 4.58 1.14 9.6

Figure 21. Ceramic Flat08 package mechanical data

4 Ordering information

Table 5.Order codes

Order code	Description	Temperature range	Package	Packing	Marking
RHF43BK-01V	Flight parts	-55°C, +125°C	Flat08	Individual cavity anti-static material trays	Marked against QML SMD
RHF43BK1	Engineering samples	-55°C, +125°C	Flat08	Individual cavity anti-static material trays	RHF43BK1
RHF43BK2	Engineering samples with 48h burn-in	-55°C, +125°C	Flat08	Individual cavity anti-static material trays	RHF43BK2
43BDIE2V	QMLV	-55°C, +125°C	Naked die	Waffle-pack	No die marking

5 Revision history

Table 6.Document revision history

Date	Revision	Changes
21-May-2007	1	First public release.
10-Dec-2007	2	Changed name of pins on pinout diagram on cover page. Modified supply current values over temperature range in electrical characteristics. Power dissipation removed from AMR table.
29-Jan-2008	3	Added ELRS-free rad-hard design in description on cover page. Modified description of heavy ion latch-up (SEL) immunity parameter in <i>Table 1</i> on page 2.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

