www.ti.com ### TL971, TL972, TL974 STRUMENTS OUTPUT RAIL-TO-RAIL VERY-LOW-NOISE OPERATIONAL AMPLIFIERS SLOS467A-OCTOBER 2006-REVISED OCTOBER 2006 #### **FEATURES** - Rail-to-Rail Output Voltage Swing: ±2.4 V at V_{CC} = ±2.5 V - Very Low Noise Level: 4 nV/√Hz - Ultra-Low Distortion: 0.003% - High Dynamic Features: 12 MHz, 4 V/μs - Operating Range: 2.7 V to 15 V - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Performance Tested Per JESD 22 - 2000-V Human-Body Model (A114-B) - 200-V Machine Model (A115-A) - 1500-V Charged-Device Model (C101) ### **APPLICATIONS** - Portable Equipment (CD Players, PDAs) - Portable Communications (Cell Phones, Pagers) - Instrumentation and Sensors - Professional Audio Circuits # DESCRIPTION/ORDERING INFORMATION The TL97x family of operational amplifiers operates at voltages as low as ± 1.35 V and features output rail-to-rail signal swing. The TL97x boast characteristics that make them particularly well suited for portable and battery-supplied equipment. Very low noise and low distortion characteristics make them ideal for audio preamplification. The TL971 is housed in the space-saving 5-pin SOT-23 package, which simplifies board design because of the ability to be placed anywhere (outside dimensions are 2.8 mm \times 2.9 mm). NC - No internal connection # TL972...D, P, OR PW PACKAGE (TOP VIEW) # TL972...DRG PACKAGE (TOP VIEW) # TL974...D, N, OR PW PACKAGE (TOP VIEW) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## TL971, TL972, TL974 OUTPUT RAIL-TO-RAIL VERY-LOW-NOISE OPERATIONAL AMPLIFIERS SLOS467A-OCTOBER 2006-REVISED OCTOBER 2006 #### **ORDERING INFORMATION** | T _A | | PACKAG | E ⁽¹⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | | | |----------------|--------|--------------|------------------|-----------------------|------------------|--|--| | | Single | SOIC - D | Reel of 2500 | TL971IDR | PREVIEW | | | | | | 30IC - D | Tube of 75 | TL971ID | PREVIEW | | | | | | SOT-23 – DBV | Reel of 3000 | TL971IDBVR | PREVIEW | | | | | | | Reel of 250 | TL971IDBVT | PREVIEW | | | | | Dual | PDIP – P | Tube of 50 | TL972IP | PREVIEW | | | | | | QFN – DRG | Reel of 1000 | TL972IDRGR | PREVIEW | | | | | | SOIC - D | Reel of 2500 | TL972IDR | PREVIEW | | | | -40°C to 125°C | | | Tube of 75 | TL972ID | PREVIEW | | | | | | TSSOP – PW | Reel of 2000 | TL972IPWR | PREVIEW | | | | | | | Tube of 150 | TL972IPW | PREVIEW | | | | | Quad | PDIP – N | Tube of 25 | TL974IN | TL974IN | | | | | | SOIC - D | Reel of 2500 | TL974IDR | - SR974I | | | | | | 30IC - D | Tube of 50 | TL974ID | - SK974I | | | | | | TCCOD DW | Reel of 2000 | TL974IPWR | 00074 | | | | | | TSSOP – PW | Tube of 90 | TL974IPW | - SR974I | | | ⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. # TL971, TL972, TL974 OUTPUT RAIL-TO-RAIL VERY-LOW-NOISE OPERATIONAL AMPLIFIERS SLOS467A-OCTOBER 2006-REVISED OCTOBER 2006 ## Absolute Maximum Ratings⁽¹⁾ over operating free-air temperature range (unless otherwise noted) | | | | | MIN | MAX | UNIT | | |-------------------|---|------------------------------|----------|-----|-------|------|--| | V _{CC} | Supply voltage range ⁽²⁾ | 2.7 | 17 | V | | | | | V_{ID} | Differential input voltage (3) | | | | ±1 | V | | | V _{IN} | Input voltage ⁽⁴⁾ | Input voltage ⁽⁴⁾ | | | | | | | | | D package ⁽⁵⁾ | 8 pin | | 97 | | | | | | D package (9) | 14 pin | | 86 | | | | | Package thermal impedance, junction to free air | DBV package ⁽⁵⁾ | | | | | | | 0 | | DRG package ⁽⁶⁾ | 44
80 | | °C/W | | | | θ_{JA} | | N package ⁽⁵⁾ | | | -C/VV | | | | | | P package ⁽⁵⁾ | | | | | | | | | PW package ⁽⁵⁾ | 8 pin | 149 | | İ | | | | | | 14 pin | | 113 | | | | T_J | Maximum junction temperature | | 150 | °C | | | | | T _{lead} | Maximum lead temperature | | 260 | °C | | | | | T _{stg} | Storage temperature range | -65 | 150 | °C | | | | | | Human-Body Model (HBM) | | 2 | kV | | | | | ESD | Machine Model (MM) | | 200 | V | | | | | | Charged-Device Model (CDM) | | 1.5 | kV | | | | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) All voltage values, except differential voltages, are with respect to network ground terminal. - (3) Differential voltages for the noninverting input terminal are with respect to the inverting input terminal. - (4) The input and output voltages must never exceed V_{CC} + 0.3 V. - (5) Package thermal impedance is calculated in accordance with JESD 51-7. - (6) Package thermal impedance is calculated in accordance with JESD 51-5. ### **Recommended Operating Conditions** | | | MIN | MAX | UNIT | |------------------|--------------------------------|------------------------|-------------------------|------| | V_{CC} | Supply voltage | 2.7 | 15 | V | | V_{ICM} | Common-mode input voltage | V _{CC} + 1.15 | V _{CC+} – 1.15 | V | | T_A | Operating free-air temperature | -40 | 125 | °C | # TL971, TL972, TL974 OUTPUT RAIL-TO-RAIL VERY-LOW-NOISE OPERATIONAL AMPLIFIERS SLOS467A-OCTOBER 2006-REVISED OCTOBER 2006 ### **Electrical Characteristics** V_{CC+} = 2.5 V, V_{CC-} = -2.5 V, full-range T_A = -40°C to 125°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | | |------------------|--------------------------------|--|----------------|-------|-------|------|--------------------|--| | ., | lanut offeet voltege | | 25°C | | 1 | 4 | mV | | | V _{IO} | Input offset voltage | | Full range | | | 6 | mv | | | αV_{IO} | Input offset voltage drift | $V_{ICM} = 0 V, V_O = 0 V$ | 25°C | | 5 | | μV/°C | | | I _{IO} | Input offset current | $V_{ICM} = 0 V, V_O = 0 V$ | 25°C | | 10 | 150 | nA | | | 1 | Input bias current | $V_{ICM} = 0 \text{ V}, V_{O} = 0 \text{ V}$ | 25°C | | 200 | 750 | nA | | | I _{IB} | input bias current | $V_{ICM} = 0$ V, $V_{O} = 0$ V | Full range | | | 1000 | | | | V _{ICM} | Common-mode input voltage | | 25°C | -1.35 | | 1.35 | V | | | CMRR | Common-mode rejection ratio | $V_{ICM} = \pm 1.35 \text{ V}$ | 25°C | 60 | 85 | | dB | | | SVR | Supply-voltage rejection ratio | $V_{CC} = \pm 2 \text{ V to } \pm 3 \text{ V}$ | 25°C | 60 | 70 | | dB | | | A_{VD} | Large-signal voltage gain | $R_L = 2 k\Omega$ | 25°C | 70 | 80 | | dB | | | V_{OH} | High-level output voltage | $R_L = 2 k\Omega$ | 25°C | 2 | 2.4 | | V | | | V _{OL} | Low-level output voltage | $R_L = 2 k\Omega$ | 25°C | | -2.4 | -2 | V | | | | Output source ourrest | | 25°C | 1.3 | 1.5 | | mΛ | | | Isource | Output source current | V _{CC} = 2.5 V | Full range | 1 | | | mA | | | | Output sink ourrent | | 25°C | 50 | 80 | | mA | | | Isink | Output sink current | V _{CC} = 2.5 V | Full range | 25 | | | MA | | | | Cumply augment (nor amplifier) | Unity sain No load | 25°C | | 2 | 2.8 | mA | | | I _{CC} | Supply current (per amplifier) | Unity gain, No load | Full range | | | 3.2 | | | | GBWP | Gain bandwidth product | $f = 100 \text{ kHz}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}$ | 25°C | 8.5 | 12 | | MHz | | | SR | Slew rate | $A_{V} = 1, V_{IN} = \pm 1 \text{ V}$ | 25°C | 3.5 | 5 | | V/μs | | | SK | Siew rate | $A_{V} = 1$, $V_{IN} = \pm 1$ V | Full range | 3 | | | | | | Φm | Phase margin at unity gain | $R_L = 2k\Omega$, $C_L = 100 pF$ | 25°C | | 60 | | 0 | | | Gm | Gain margin | $R_L = 2k\Omega$, $C_L = 100 pF$ | 25°C | | 10 | | dB | | | e _n | Equivalent input noise voltage | f = 100 kHz | 25°C | | 4 | | nV/√ Hz | | | THD | Total harmonic distortion | $f = 1 \text{ kHz}, A_V = -1, R_L = 10 \text{ k}Ω$ | 25°C | | 0.003 | | % | | #### TYPICAL CHARACTERISTICS # TOTAL HARMONIC DISTORTION VS FREQUENCY ## TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT VOLTAGE ### **TYPICAL CHARACTERISTICS (continued)** # TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT VOLTAGE # INPUT VOLTAGE NOISE vs FREQUENCY #### GAIN BANDWIDTH PRODUCT vs OUTPUT CURRENT # GAIN BANDWIDTH PRODUCT VS SUPPLY VOLTAGE ### **TYPICAL CHARACTERISTICS (continued)** #### **INPUT RESPONSE** ### **TYPICAL CHARACTERISTICS (continued)** # POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY # OUTPUT VOLTAGE vs OUTPUT CURRENT #### OUTPUT IMPEDANCE vs FREQUENCY #### SLEW RATE vs SUPPLY VOLTAGE #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp (3) | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|--------------------| | TL974ID | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL974IDG4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL974IDR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL974IDRG4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL974IN | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | TL974INE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | TL974IPW | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL974IPWG4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL974IPWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL974IPWRG4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ## D (R-PDSO-G14) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end. - Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side. - E. Reference JEDEC MS-012 variation AB. ### PW (R-PDSO-G**) #### 14 PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | | Applications | | |------------------------|---|---| | amplifier.ti.com | Audio | www.ti.com/audio | | dataconverter.ti.com | Automotive | www.ti.com/automotive | | dsp.ti.com | Broadband | www.ti.com/broadband | | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | logic.ti.com | Military | www.ti.com/military | | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | microcontroller.ti.com | Security | www.ti.com/security | | www.ti.com/lpw | Telephony | www.ti.com/telephony | | | Video & Imaging | www.ti.com/video | | | Wireless | www.ti.com/wireless | | | dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com | amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2006, Texas Instruments Incorporated