

CAT25C64

64K-Bit SPI Serial CMOS EEPROM

RoHS Compliance

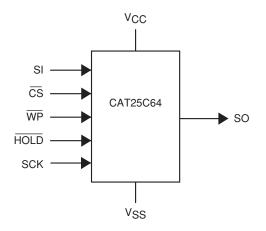
FEATURES

- 10 MHz SPI compatible
- 1.8 to 5.5 volt operation
- Hardware and software protection
- Low power CMOS technology
- SPI modes (0,0 &1,1)
- Commercial, industrial and automotive temperature ranges
- 1,000,000 program/erase cycles
- 100 year data tetention
- Self-timed write cycle
- 8-pin DIP and SOIC
- 64-Byte page write buffer
- Block write protection
 - Protect 1/4, 1/2 or all of EEPROM array

DESCRIPTION

The CAT25C64 is a 64K-Bit SPI Serial CMOS EEPROM internally organized as 8Kx8 bits. Catalyst's advanced CMOS Technology substantially reduces device power requirements. The CAT25C64 features a 64-byte page write buffer. The device operates via the SPI bus serial interface and is enabled though a Chip Select (CS). In addition to the Chip Select, the clock input (SCK), data in (SI) and data out (SO) are required to access the device. The HOLD pin may be used to suspend any serial communication without resetting the serial sequence. The CAT25C64 is designed with software and hardware write protection features including Block write protection. The device is available in 8-pin DIP and SOIC packages.

PIN CONFIGURATION


PDIP (P, L) SOIC (S, V)

CS	1	8	VCC
SO	2	7	HOLD
\overline{WP}	3	6	SCK
V_{SS}	4	5	SI

PIN FUNCTIONS

Pin Name	Function
SO	Serial Data Output
SCK	Serial Clock
WP	Write Protect
Vcc	+1.8V to +5.5V Power Supply
V _{SS}	Ground
CS	Chip Select
SI	Serial Data Input
HOLD	Suspends Serial Input

FUNCTIONAL SYMBOL

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias–55°C to +125°C
Storage Temperature -65°C to $+150^{\circ}\text{C}$
Voltage on any Pin with Respect to $V_{SS}^{(1)}$ –2.0V to +V _{CC} +2.0V
V_{CC} with Respect to V_{SS} 2.0V to +7.0V
Package Power Dissipation Capability (Ta = 25°C)
Lead Soldering Temperature (10 secs) 300°C
Output Short Circuit Current ⁽²⁾

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min.	Max.	Units
N _{END} (3)	Endurance	1,000,000		Cycles/Byte
T _{DR} (3)	Data Retention	100		Years

D.C. OPERATING CHARACTERISTICS

 V_{CC} = +1.8V to +5.5V, unless otherwise specified.

			Limits			
Symbol	Parameter	Min.	Тур.	Max.	Test Conditions	Units
I _{CC1}	Power Supply Current (Operating Write)			10	V _{CC} = 5V @ 10MHz SO = open; CS = Vss	mA
Icc2	Power Supply Current (Operating Read)			2	V _{CC} = 5.0V F _{CLK} = 10MHz	mA
I _{SB} ⁽⁴⁾	Power Supply Current (Standby)			1	$\overline{CS} = V_{CC}$ $V_{IN} = V_{SS}$ or V_{CC}	μΑ
ILI	Input Leakage Current			2		μΑ
I _{LO}	Output Leakage Current			3	$V_{OUT} = 0V \text{ to } V_{CC},$ $CS = 0V$	μΑ
V _{IL} (5)	Input Low Voltage	-1		V _{CC} x 0.3		V
V _{IH} ⁽⁵⁾	Input High Voltage	Vcc x 0.7		Vcc + 0.5		V
V _{OL1}	Output Low Voltage			0.4	$2.7V \le V_{CC} < 5.5V$	V
V _{OH1}	Output High Voltage	V _{CC} - 0.8			I _{OL} = 3.0mA I _{OH} = -1.6mA	V
V _{OL2}	Output Low Voltage			0.2	$1.8V \le V_{CC} < 2.7V$	V
V _{OH2}	Output High Voltage	V _{CC} -0.2			I _{OL} = 150μA I _{OH} = -100μA	V

Note:

- (1) The minimum DC input voltage is -0.5V. During transitions, inputs may undershoot to -2.0V for periods of less than 20 ns. Maximum DC voltage on output pins is VCC +0.5V, which may overshoot to VCC +2.0V for periods of less than 20 ns.
- (2) Output shorted for no more than one second. No more than one output shorted at a time.
- (3) These parameter are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods.
- (4) Maximum standby current (ISB) = $10\mu A$ for the Automotive and Extended Automotive temperature range.
- (5) V_{IL} min and V_{IH} max are reference values only and are not tested.

PIN CAPACITANCE (1)

Applicable over recommended operating range from TA=25°C, f=1.0 MHz, VCC=±5.0V (unless otherwise noted).

Symbol	Test Conditions	Max.	Conditions	Units
C _{OUT}	Output Capacitance (SO)	8	V _{OUT} =0V	pF
C _{IN}	Input Capacitance (CS, SCK, SI, WP, HOLD)	6	V _{IN} =0V	pF

A.C. CHARACTERISTICS

		CAT25	C64-1.8		CAT2	5C64			
		Vcc = Vcc = 1.8V - 5.5V 2.5V - 5.5V 4.			cc = - 5.5V	Test			
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	Conditions	UNITS
tsu	Data Setup Time	50		50		20			ns
tн	Data Hold Time	50		50		20			ns
twн	SCK High Time	250		125		40			ns
twL	SCK Low Time	250		125		40			ns
fsck	Clock Frequency	DC	1	DC	3	DC	10		MHz
tLZ	HOLD to Output Low Z		50		50		50		ns
t _{RI} ⁽¹⁾	Input Rise Time		2		2		2		μs
t _{FI} ⁽¹⁾	Input Fall Time		2		2		2		μs
thD	HOLD Setup Time	100		100		40			ns
tcD	HOLD Hold Time	100		100		40			ns
twc ⁽³⁾	Write Cycle Time		10		10		5	$C_L = 50pF$	ms
t∨	Output Valid from Clock Low		250		125		40	(2)	ns
tho	Output Hold Time	0		0		0			ns
tois	Output Disable Time		250		250		75		ns
tHZ	HOLD to Output High Z		150		100		50		ns
tcs	CS High Time	500		250		100			ns
tcss	CS Setup Time	500		250		100			ns
tсsн	CS Hold Time	500		250		100			ns

Power-Up Timing⁽⁴⁾⁽⁵⁾

Symbol	Parameter	Max.	Units
t _{PUR}	Power-up to Read Operation	1	ms
tpuw	D 1 11/11 0 11		ms

Note:

- (1) This parameter is tested initially and after a design or process change that affects the parameter.
- (2) AC Test Conditions:

Input Pulse Voltages: 0.3V_{CC} to 0.7V_{CC}

Input rise and fall times: ≤10ns

Input and output reference voltages: 0.5V_{CC}

Output load: current source IOL max/IOH max; C_L=50pF

- (3) two is the time from the rising edge of $\overline{\text{CS}}$ after a valid write sequence to the end of the internal write cycle.
- (4) This parameter is tested initially and after a design or process change that affects the parameter.
- (5) t_{PUR} and t_{PUW} are the delays required from the time V_{CC} is stable until the specified operation can be initiated.

FUNCTIONAL DESCRIPTION

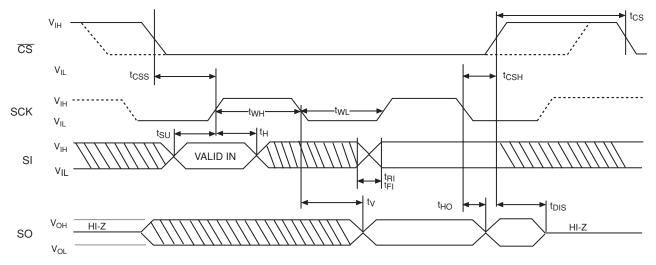
The CAT25C64 supports the SPI bus data transmission protocol. The synchronous Serial Peripheral Interface (SPI) helps the CAT25C64 to interface directly with many of today's popular microcontrollers. The CAT25C64 contains an 8-bit instruction register. (The instruction set and the operation codes are detailed in the instruction set table)

After the device is selected with \overline{CS} going low, the first byte will be received. The part is accessed via the SI pin, with data being clocked in on the rising edge of SCK. The first byte contains one of the six op-codes that define the operation to be performed.

PIN DESCRIPTION

SI: Serial Input

SI is the serial data input pin. This pin is used to input all opcodes, byte addresses, and data to be written to the 25C64. Input data is latched on the rising edge of the serial clock.


SO: Serial Output

SO is the serial data output pin. This pin is used to transfer data out of the 25C64. During a read cycle, data is shifted out on the falling edge of the serial clock.

SCK: Serial Clock

SCK is the serial clock pin. This pin is used to synchronize

Figure 1. Sychronous Data Timing

Note: Dashed Line= mode (1, 1) -----

INSTRUCTION SET

Instruction	Opcode	Operation
WREN	0000 0110	Enable Write Operations
WRDI	0000 0100	Disable Write Operations
RDSR	0000 0101	Read Status Register
WRSR	0000 0001	Write Status Register
READ	0000 0011	Read Data from Memory
WRITE	0000 0010	Write Data to Memory

the communication between the microcontroller and the 25C64. Opcodes, byte addresses, or data present on the SI pin are latched on the rising edge of the SCK. Data on the SO pin is updated on the falling edge of the SCK.

CS: Chip Select

CS is the Chip select pin. CS low enables the CAT25C64 and CS high disables the CAT25C64. CS high takes the SO output pin to high impedance and forces the devices into a Standby Mode (unless an internal write operation is underway). The CAT25C64 draws ZERO current in the Standby mode. A high to low transition on CS is required prior to any sequence being initiated. A low to high transition on CS after a valid write sequence is what initiates an internal write cycle.

WP: Write Protect

WP is the Write Protect pin. The Write Protect pin will allow normal read/write operations when held high. When WP is tied low and the WPEN bit in the status register is set to "1", all write operations to the status register are inhibited. WP going low while CS is still low

will interrupt a write to the status register. If the internal write cycle has already been initiated, \overline{WP} going low will have no effect on any write operation to the status register. The \overline{WP} pin function is blocked when the WPEN bit is set to 0.

HOLD: Hold

The \overline{HOLD} pin is used to pause transmission to the CAT25C64 while in the middle of a serial sequence without having to re-transmit entire sequence at a later time. To pause, \overline{HOLD} must be brought low while SCK is low. The SO pin is in a high impedance state during the time the part is paused, and transitions on the SI pins will be ignored. To resume communication, \overline{HOLD} is brought high, while SCK is low. (\overline{HOLD} should be held high any time this function is not being used.) \overline{HOLD} may be tied high directly to V_{cc} or tied to V_{cc} through a resistor. Figure 9 illustrates hold timing sequence.

STATUS REGISTER

7	6	5	4	3	2	1	0
WPEN	X	Х	Χ	BP1	BP0	WEL	RDY

BLOCK PROTECTION BITS

Status R	egister Bits	Array Address	Protection
BP1	BP0	Protected	
0	0	None	No Protection
0	1	1800-1FFF	Quarter Array Protection
1	0	1000-1FFF	Half Array Protection
1	1	0000-1FFF	Full Array Protection

WRITE PROTECT ENABLE OPERATION

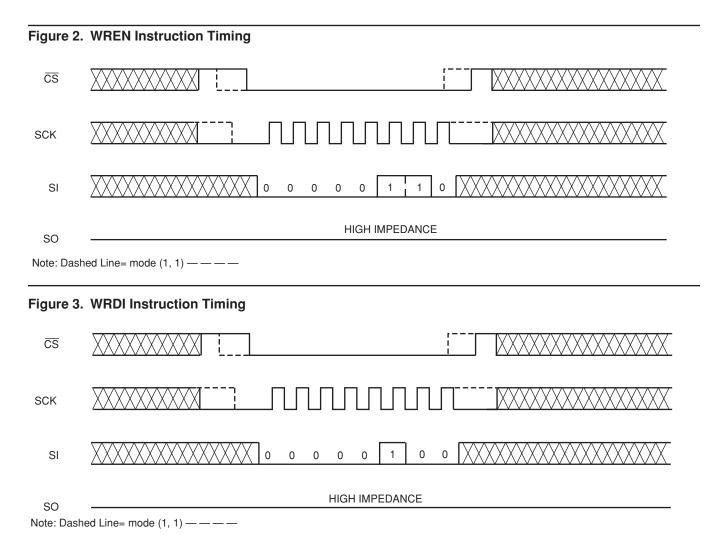
WPEN	WP	WEL	Protected Blocks	Unprotected Blocks	Status Register
0	X	0	Protected	Protected	Protected
0	Х	1	Protected	Writable	Writable
1	Low	0	Protected	Protected	Protected
1	Low	1	Protected	Writable	Protected
Х	High	0	Protected	Protected	Protected
Х	High	1	Protected	Writable	Writable

STATUS REGISTER

The Status Register indicates the status of the device.

The RDY (Ready) bit indicates whether the CAT25C64 is busy with a write operation. When set to 1 a write cycle is in progress and when set to 0 the device indicates it is ready. This bit is read only.

The WEL (Write Enable) bit indicates the status of the write enable latch. When set to 1, the device is in a Write Enable state and when set to 0 the device is in a Write Disable state. The WEL bit can only be set by the WREN instruction and can be reset by the WRDI instruction.


The BP0 and BP1 (Block Protect) bits indicate which blocks are currently protected. These bits are set by the user issuing the WRSR instruction. The user is allowed to protect quarter of the memory, half of the memory or the entire memory by setting these bits. Once protected the user may only read from the protected portion of the array. These bits are non-volatile.

The WPEN (Write Protect Enable) is an enable bit for the \overline{WP} pin. The \overline{WP} pin and WPEN bit in the status register control the programmable hardware write protect feature. Hardware write protection is enabled when \overline{WP} is low and WPEN bit is set to high. The user cannot write to the status register (including the block protect bits and the WPEN bit) and the block protected sections in the memory array when the chip is hardware write protected. Only the sections of the memory array that are not block protected can be written. Hardware write protection is disabled when either WP pin is high or the WPEN bit is zero.

DEVICE OPERATION

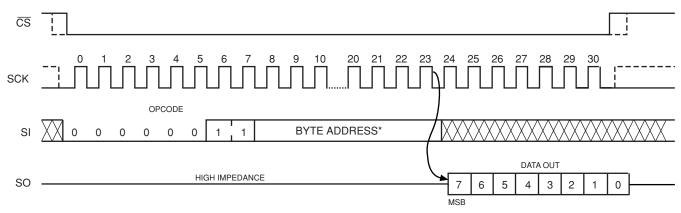
Write Enable and Disable

The CAT25C64 contains a write enable latch. This latch must be set before any write operation. The device powers up in a write disable state when $V_{\rm cc}$ is applied. WREN instruction will enable writes (set the latch) to the device. WRDI instruction will disable writes (reset the latch) to the device. Disabling writes will protect the device against inadvertent writes.

6

READ Sequence

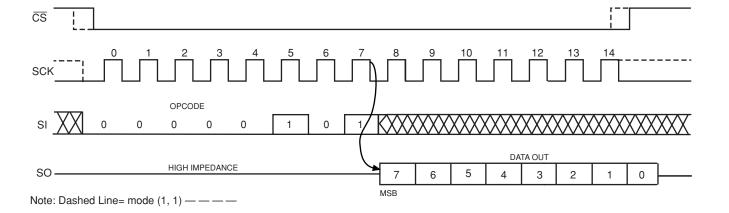
The part is selected by pulling \overline{CS} low. The 8-bit read instruction is transmitted to the CAT25C64, followed by the 16-bit address(the three Most Significant Bits are don't care.


After the correct read instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin. The data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal address pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address (1FFFh) is reached, the address counter rolls over to 0000h allowing the read cycle to be continued indefinitely. The readoperation is terminated by pulling the $\overline{\text{CS}}$ high.

To read the status register, RDSR instruction should be sent. The contents of the status register are shifted out on the SO line. The status register may be read at any time even during a write cycle. Read sequece is illustrated in Figure 4. Reading status register is illustrated in Figure 5.

WRITE Sequence

The CAT25C64 powers up in a Write Disable state. Prior to any write instructions, the WREN instruction must be sent to CAT25C64. The device goes into Write enable state by pulling the $\overline{\text{CS}}$ low and then clocking the WREN instruction into CAT25C64. The $\overline{\text{CS}}$ must be brought high after the WREN instruction to enable writes to the device. If the write operation is initiated immediately after the WREN instruction without $\overline{\text{CS}}$ being brought high, the data will not be written to thearray because the write enable latch will not have been properly set. Also, for a successful write operation the address of the memory location(s) to be programmed must be outside the protected address field



^{*}Please check the instruction set table for address

Note: Dashed Line= mode (1, 1) -----

Figure 5. RDSR Instruction Timing

location selected by the block protection level.

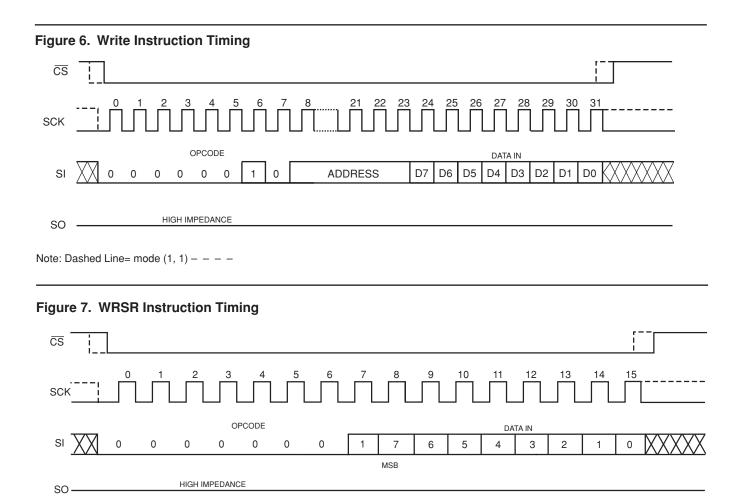
Byte Write

Once the device is in a Write Enable state, the user may proceed with a write sequence by setting the \overline{CS} low, issuing a write instruction via the SI line, followed by the 16-bit address (the three Most Significant Bits are don't care), and then the data to be written. Programming will start after the \overline{CS} is brought high. Figure 6 illustrates byte write sequence.

During an internal write cycle, all commands will be ignored except the RDSR (Read Status Register) instruction.

The Status Register can be read to determine if the write cycle is still in progress. If Bit 0 of the Status Register is set at 1, write cycle is in progress. If Bit 0 is set at 0, the device is ready for the next instruction.

Page Write

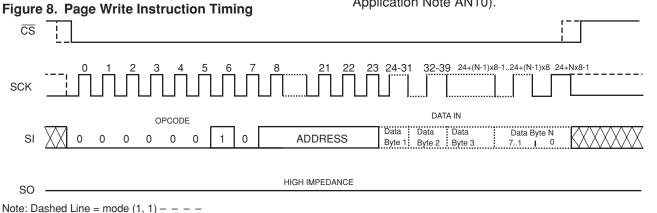

The CAT25C64 features page write capability. After the first initial byte the host may continue to write up

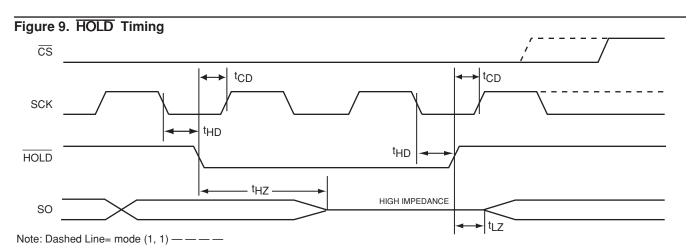
to 64 bytes of data to the CAT25C64. After each byte of data is received, six lower order address bits are internally incremented by one; the high order bits of address will remain constant. The only restriction is that the 64 bytes must reside on the same page. If the address counter reaches the end of the page and clock continues, the counter will "roll over" to the first address of the page and overwrite any data that may have been written. The CAT25C64 is automatically returned to the write disable state at the completion of the write cycle. Figure 8 illustrates the page write sequence.

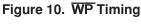
To write to the status register, the WRSR instruction should be sent. Only Bit 2, Bit 3 and Bit 7 of the status register can be written using the WRSR instruction. Figure 7 illustrates the sequence of writing to status register.

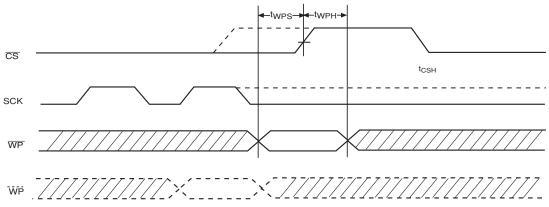
DESIGN CONSIDERATIONS

The CAT25C64 powers up in a write disable state and in a low power standby mode. A WREN instruction must be issued to perform any writes to the device after power up. Also, on power up \overline{CS} should be brought low to enter a ready

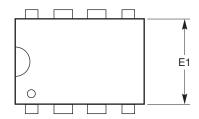

Note: Dashed Line= mode (1, 1) - - -

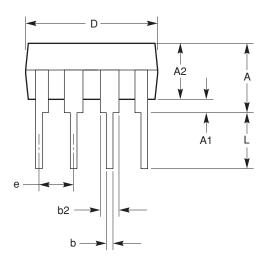


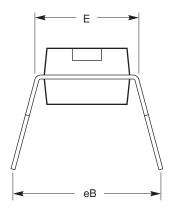

state and receive an instruction. After a successful byte/page write or status register write the CAT25C64 goes into a write disable mode. \overline{CS} must be set high after the proper number of clock cycles to start an internal write cycle. Access to the array during an internal write cycle is ignored and program-ming is continued. On power up,


SO is in a high impedance.

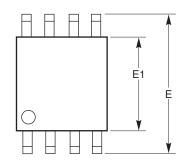
When powering down, the supply should be taken down to 0V, so that the CAT25C64 will be reset when power is ramped back up. If this is not possible, then, following a brown-out episode, the CAT25C64 can be reset by refreshing the contents of the Status Register (See Application Note AN10).

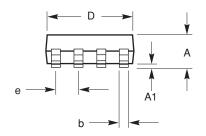





Note: Dashed Line= mode (1, 1) -----

PACKAGE INFORMATION 8-LEAD 300 MIL WIDE PLASTIC DIP (P, L)


SYMBOL	MIN	NOM	MAX	
Α	0.120		0.210	
A1	0.015			
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	
b2	0.045	0.060	0.070	
D	0.355	0.365	0.400	
D2	0.300		0.325	
E	0.300	0.310	0.325	
E1	0.240	0.250	0.280	
е		0.100 BSC		
eB			0.430	
L	0.115	0.130	0.150	

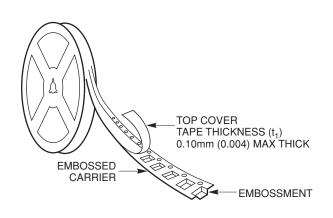

Notes:

- 1. Complies with JEDEC Standard MS001.
- 2. All dimensions are in inches.
- 3. Dimensioning and tolerancing per ANSI Y14.5M-1982

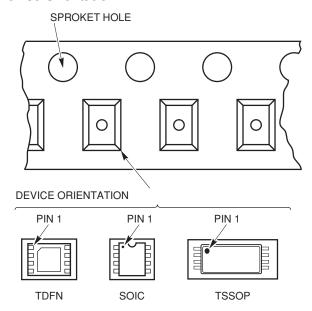
8-LEAD 150 MIL WIDE SOIC (S, V)

SYMBOL	MIN	NOM	MAX
A1	0.0040		0.0098
A2	0.0532		0.0688
b	0.013		0.020
С	0.0075		0.0098
D	0.1890		0.1968
Е	02284		0.2440
E1	0.149		0.1574
е		0.050 BSC	
f	0.0099		0.0196
θ1	0°		8°

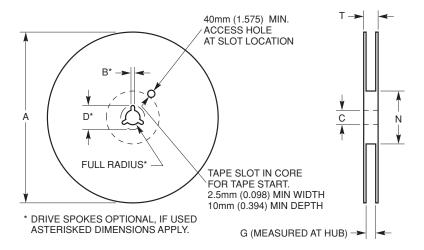
Notes:


- Complies with JEDEC specification MS-012 dimensions. All linear dimensions in millimeters.

11



TAPE AND REEL


Direction of Feed

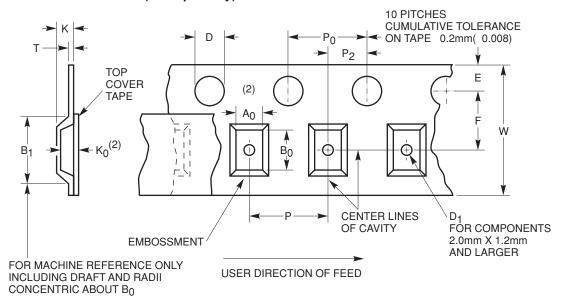
Device Orientation

Reel Dimensions(1)

Embossed Carrier Dimensions

TAPE	Α							
SIZE	MAX	QTY/REEL	B MIN	С	D* MIN	N MIN	G	T MAX
12MM	330 (13.00)	3000	1.5 (0.059)	12.80 (0.504) 13.20 (0.5200)	20.2 (0.795)	50 (1.969)	12.4 (0.488) 14.4 (0.558)	<u>18.4</u> (0.724)

Component/Tape Size Cross-Reference


Component	Package Type	Tape Size (W)	Part Pitch (P)	
8L SOIC	S, V	12mm	8mm	

Notes:

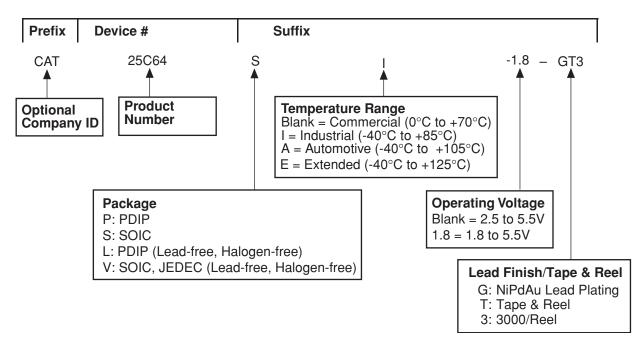
(1) Metric dimensions will govern; English measurements rounded, for reference only and in parentheses.

Embossed Carrier Dimensions (12 Pape Only)

Embossed Tape—Constant Dimensions(1)

Tape Sizes	D	E	P _o	T Max.	D1 Min.	$A_0 B_0 K_0^{(2)}$
10mm	1.5 (0.059)	1.65 (0.065)	3.9 (0.153)	400	1.5	
12mm	1.6 (0.063)	1.85 (0.073)	4.1 (0.161)	(0.016)	(0.059)	

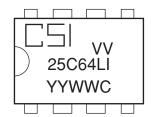
Embossed Tape—Variable Dimensions(1)


Tape Sizes	B ₁ Max.	F	K Max.	P ₂	R Min.	W	Р
12mm	8.2	5.45 (0.0215)	4.5	1.95 (0.077)	30	11.7 (0.460)	<u>7.9 (0.275)</u>
1211111	(0.0323)	5.55 (0.0219)	(0.177)	2.05 (0.081)	(1.181)	12.3 (0.484)	8.1 (0.355)

Note

- (1) Metric dimensions will govern; English measurements rounded, for reference only and in parentheses.
- (2) A₀ B₀ K₀ are determined by component size. The clearance between the component and the cavity must be within 0.05 (0.002) min. to 0.65 (0.026) max. for 12mm tape, 0.05 (0.002) min. to 0.90 (0.035) max. for 16mm tape, and 0.05 (0.002) min. to 1.00 (0.039) max. for 24mm tape and larger. The component cannot rotate more than 20° within the determined cavity, see Component Rotation.

ORDERING INFORMATION


Notes:

(1) The device used in the above example is a 25C64SI-1.8GT3 (SOIC, Industrial Temperature, 1.8 Volt to 5.5 Volt Operating Voltage, Tape & Reel)

PACKAGE MARKING

8-Lead PDIP

CSI = Catalyst Semiconductor, Inc.

VV = Voltage Range

1.8V - 5.5V = 18

2.5V - 5.5V = Blank

25C64L = Device Code

I = Temperature Range

YY = Production Year

WW = Production Week

C = Product Revision

8-Lead SOIC

CSI = Catalyst Semiconductor, Inc.

VV = Voltage Range

1.8V - 5.5V = 18

2.5V - 5.5V = Blank

25C64V = Device Code

I = Temperature Range

YY = Production Year

WW = Production Week

C = Product Revision

REVISION HISTORY

Date	Rev.	Reason
12/22/2005	Α	Initial Issue
03/21/06	В	Update D.C. Operating Characteristics
		Update A.C. Characteristics
		Update Pin Description

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™ MiniPot™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200

www.catsemi.com

Publication #: 1112 Revison: B

Issue date: 03/21/06