RD74VT1G245

Bus Transceiver with 3-state Output / Dual Supply Voltage Translator

REJ03D0494-0200
Rev.2.00
Apr. 01, 2005

Description

The RD74VT1G245 has one buffer in a 6 pin package. When DIR is high, data is transferred from the A inputs to the B outputs, and when DIR is low, data is transferred from the B inputs to the A outputs. And this product has two terminals $\left(\mathrm{V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCB}}\right)$, $\mathrm{V}_{\mathrm{CCA}}$ is connected with control input and A bus side $\mathrm{V}_{\mathrm{CCB}}$ is connected with B bus side. $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ are isolated. The A port is designed to track $\mathrm{V}_{\mathrm{CCA}}$, which accepts voltages from 1.2 V to 3.6 V , and the B port is designed to track $\mathrm{V}_{\mathrm{CCB}}$, which operation at 1.2 V to 3.6 V . Therefore, Bidirectional board voltage conversion is possible. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

Features

- This product function as level shift transceiver that change $\mathrm{V}_{\mathrm{CCA}}$ input level to $\mathrm{V}_{\mathrm{CCB}}$ output level, $\mathrm{V}_{\mathrm{CCB}}$ input level to $\mathrm{V}_{\mathrm{CCA}}$ output level by providing different supply voltage to $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$.
- Supply voltage range: $\quad \mathrm{V}_{\mathrm{CCA}}=1.2$ to 3.6 V

$$
\mathrm{V}_{\mathrm{CCB}}=1.2 \text { to } 3.6 \mathrm{~V}
$$

- Operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Control input $\mathrm{V}_{\mathrm{I}(\max)}=3.6 \mathrm{~V}$
- A bus side input outputs $\mathrm{V}_{\mathrm{I} / \mathrm{O}(\max)}=3.6 \mathrm{~V}$
- $\quad \mathrm{B}$ bus side input outputs $\mathrm{V}_{\mathrm{I} / \mathrm{O}(\max)}=3.6 \mathrm{~V}$
(@V $\mathrm{V}_{\mathrm{CCA}}=0$ to 3.6 V)
(@V $\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$ or Output off state)
(@ $\mathrm{V}_{\mathrm{CCB}}=0 \mathrm{~V}$ or Output off state)
- High output current

A bus side:	$\pm 2 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCA}}=1.2 \mathrm{~V}\right)$	B bus side:
	$\pm 4 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCA}}=1.5 \pm 0.1 \mathrm{~V}\right)$	$\pm 2 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCB}}=1.2 \mathrm{~V}\right)$
	$\pm 6 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCA}}=1.8 \pm 0.15 \mathrm{~V}\right)$	$\pm 4 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCB}}=1.5 \pm 0.1 \mathrm{~V}\right)$
	$\pm 18 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCA}}=2.5 \pm 0.2 \mathrm{~V}\right)$	$\pm 6 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCB}}=1.8 \pm 0.15 \mathrm{~V}\right)$
	$\pm 24 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCA}}=3.3 \pm 0.3 \mathrm{~V}\right)$	$\pm 18 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}\right)$
		$\pm 24 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}\right)$

- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
RD74VT1G245CLE	WCSP-6 pin	SXBG0006KB-A (TBS-6AV)	CL	$\mathrm{E}(3,000 \mathrm{pcs} /$ reel)

Article Indication

Function Table

Input	
DIR	
L	$\mathrm{B} \rightarrow \mathrm{A}$
H	$\mathrm{A} \rightarrow \mathrm{B}$

H: High level
L: Low level

Pin Arrangement

Logic Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage range	$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	-0.5 to 4.6	V	
Input voltage range ${ }^{* 1}$	V_{1}	-0.5 to 4.6	V	DIR
Input/output voltage range ${ }^{* 1,2}$	$\mathrm{V}_{1 / \mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{CCA}}+0.5$		A port output: "H" or "L"
		-0.5 to 4.6		A port output: "Z" or V VCcA : OFF
		-0.5 to $V_{\text {CCB }}+0.5$		B port output: "H" or "L"
		-0.5 to 4.6		B port output: "Z" or $\mathrm{V}_{\text {ccB }}$: OFF
Input clamp current	$\mathrm{I}_{\text {K }}$	-50	mA	$V_{1}<0$
Output clamp current	Іок	-50	mA	$\mathrm{V}_{0}<0$
		50		$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5$
Continuous output current	Io	± 50	mA	
Continuous output current $V_{C C}$ or GND	$I_{\text {CCA }}, I_{\text {CCB }}, I_{\text {IND }}$	± 100	mA	
Package Thermal impedance	$\theta_{\text {ja }}$	-123	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Storage temperature	Tstg	- -65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 4.6 V maximum.

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage range	$V_{\text {CCA }}$	1.2 to 3.6	V	
	$V_{\text {ccb }}$	1.2 to 3.6		
Input/Output voltage	V_{1}	0 to 3.6	V	DIR
	V_{11}	0 to $\mathrm{V}_{\mathrm{CCA}}$	V	A port output: "H" or "L"
		0 to 3.6		A port output: "Z" or V CCA : OFF
		0 to $\mathrm{V}_{\mathrm{CCB}}$		B port output: "H" or "L"
		0 to 3.6		B port output: "Z" or $\mathrm{V}_{\text {cСв }}$: OFF
Output current	Іона	-2	mA	$\mathrm{V}_{\text {CCA }}=1.2 \mathrm{~V}$
		-4		$\mathrm{V}_{\text {CCA }}=1.5 \pm 0.1 \mathrm{~V}$
		-6		$\mathrm{V}_{\text {CCA }}=1.8 \pm 0.15 \mathrm{~V}$
		-18		$\mathrm{V}_{\text {CCA }}=2.5 \pm 0.2 \mathrm{~V}$
		-24		$\mathrm{V}_{\text {CCA }}=3.3 \pm 0.3 \mathrm{~V}$
	Іонв	-2	mA	$\mathrm{V}_{\text {CCB }}=1.2 \mathrm{~V}$
		-4		$\mathrm{V}_{\text {ССВ }}=1.5 \pm 0.1 \mathrm{~V}$
		-6		$\mathrm{V}_{\text {CCB }}=1.8 \pm 0.15 \mathrm{~V}$
		-18		$\mathrm{V}_{\text {ССВ }}=2.5 \pm 0.2 \mathrm{~V}$
		-24		$\mathrm{V}_{\text {ССВ }}=3.3 \pm 0.3 \mathrm{~V}$
	lola	2	mA	$\mathrm{V}_{C C A}=1.2 \mathrm{~V}$
				$\mathrm{V}_{\text {CCA }}=1.5 \pm 0.1 \mathrm{~V}$
		6		$\mathrm{V}_{\text {CCA }}=1.8 \pm 0.15 \mathrm{~V}$
		18		$\mathrm{V}_{\text {CCA }}=2.5 \pm 0.2 \mathrm{~V}$
		24		$\mathrm{V}_{\text {CCA }}=3.3 \pm 0.3 \mathrm{~V}$
	loLb	2	mA	$\mathrm{V}_{\text {CCB }}=1.2 \mathrm{~V}$
		4		$\mathrm{V}_{\text {ССВ }}=1.5 \pm 0.1 \mathrm{~V}$
		6		$\mathrm{V}_{\text {ССВ }}=1.8 \pm 0.15 \mathrm{~V}$
		18		$\mathrm{V}_{\text {ССВ }}=2.5 \pm 0.2 \mathrm{~V}$
		24		$\mathrm{V}_{\text {CCB }}=3.3 \pm 0.3 \mathrm{~V}$
Input transition rise or fall time	$\Delta t / \Delta v$	10	ns / V	
Operation free-air temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics

($\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$)

Item	Symbol	$\mathrm{V}_{\mathrm{cca}}(\mathrm{V})^{*}$	$\mathrm{V}_{\text {ccb }}\left(\mathrm{V}\right.$) ${ }^{*}$	Min	Typ	Max	Unit	Test conditions
Input voltage	$\mathrm{V}_{\text {IHA }}$	1.2	1.2 to 3.6	$\mathrm{V}_{\text {CCA }} \times 0.75$	-	-	V	A port Control input
		1.5 ± 0.1		$\mathrm{V}_{\text {CCA }} \times 0.70$	-	-		
		1.8 ± 0.15		$\mathrm{V}_{\text {CCA }} \times 0.65$	-	-		
		2.5 ± 0.2		1.6	-	-		
		3.3 ± 0.3		2.0	-	-		
	$\mathrm{V}_{\text {IHB }}$	1.2 to 3.6	1.2	$\mathrm{V}_{\text {ccB }} \times 0.75$	-	-	V	B port
			1.5 ± 0.1	$\mathrm{V}_{\text {ccB }} \times 0.70$	-	-		
			1.8 ± 0.15	$\mathrm{V}_{\mathrm{CCB}} \times 0.65$	-	-		
			2.5 ± 0.2	1.6	-	-		
			3.3 ± 0.3	2.0	-	-		
	$\mathrm{V}_{\text {ILA }}$	1.2	1.2 to 3.6	-	-	$\mathrm{V}_{\text {CCA }} \times 0.25$	V	A port Control input
		1.5 ± 0.1		-	-	$\mathrm{V}_{\text {CCA }} \times 0.30$		
		1.8 ± 0.15		-	-	$\mathrm{V}_{\text {cca }} \times 0.35$		
		2.5 ± 0.2		-	-	0.7		
		3.3 ± 0.3		-	-	0.8		
	$\mathrm{V}_{\text {ILB }}$	1.2 to 3.6	1.2	-	-	$\mathrm{V}_{\text {ccB }} \times 0.25$	V	B port
			1.5 ± 0.1	-	-	$\mathrm{V}_{\text {ccB }} \times 0.30$		
			1.8 ± 0.15	-	-	$\mathrm{V}_{\mathrm{CCB}} \times 0.35$		
			2.5 ± 0.2	-	-	0.7		
			3.3 ± 0.3	-	-	0.8		
Output voltage	V_{OH}	1.2 to 3.6	1.2 to 3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$	-	-	V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
		1.2	1.2	0.9	-	-		$\mathrm{IOH}=-2 \mathrm{~mA}$
		1.5 ± 0.1	1.5 ± 0.1	1.1	-	-		$\mathrm{IOH}=-4 \mathrm{~mA}$
		1.8 ± 0.15	1.8 ± 0.15	1.25	-	-		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$
		2.5 ± 0.2	2.5 ± 0.2	1.7	-	-		$\mathrm{lOH}^{\text {O }}=-18 \mathrm{~mA}$
		3.3 ± 0.3	3.3 ± 0.3	2.2	-	-		$\mathrm{lOH}_{\mathrm{OH}}=-24 \mathrm{~mA}$
	VoL	1.2 to 3.6	1.2 to 3.6	-	-	0.2	V	$\mathrm{loL}=100 \mu \mathrm{~A}$
		1.2	1.2	-	-	0.3		$\mathrm{loL}=2 \mathrm{~mA}$
		1.5 ± 0.1	1.5 ± 0.1	-	-	0.3		$\mathrm{loL}^{2}=4 \mathrm{~mA}$
		1.8 ± 0.15	1.8 ± 0.15	-	-	0.3		$\mathrm{loL}=6 \mathrm{~mA}$
		2.5 ± 0.2	2.5 ± 0.2	-	-	0.6		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$
		3.3 ± 0.3	3.3 ± 0.3	-	-	0.55		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
Input current	I_{N}	3.6	3.6	-1.5	-	1.5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CCA}}$ control input
Off state output current	loz	3.6	3.6	-1.5	-	1.5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$
Output leakage current	Ioff	0	0	-	-	1.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN, }}, \mathrm{V}_{\text {OUT }}= \\ & 0 \text { to } 3.6 \mathrm{~V} \end{aligned}$
Quiescent supply current	Icca	1.2 to 3.6	1.2 to 3.6	-3.0	-	3.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{l}_{\mathrm{O}(\mathrm{~A} \text { port })}=0 \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCB}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$
	$\mathrm{I}_{\text {c¢b }}$	1.2 to 3.6	1.2 to 3.6	-3.0	-	3.0		$\begin{aligned} & \mathrm{I}_{(\text {(B port })}=0 \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CCA}} \text { or } G N D \end{aligned}$
Increase in ICC per input	$\Delta l_{\text {cca }}$	3.6	3.6	-	-	250	$\mu \mathrm{A}$	A port or control $\mathrm{V}_{\text {CCA }}-0.6$ (1 input)
	$\Delta \mathrm{l}_{\text {сСв }}$	3.6	3.6	-	-	250		B port $\mathrm{V}_{\text {CCB }}-0.6$ (1 input)
Input capacitance	$\mathrm{C}_{\text {IN }}$	3.3	3.3	-	3.5	-	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or GND
Input/output capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	3.3	3.3	-	6.0	-	pF	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

$\mathrm{V}_{\text {CCA }}=3.3 \pm 0.3 \mathrm{~V}$														
Item	Symbol	From (input)	To (output)	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$									Unit	Test conditions
				$\begin{aligned} & \mathrm{V}_{\mathrm{cCB}}= \\ & 1.2 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.5 \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.8 \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.5 \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.3 \pm 0.3 \mathrm{~V} \end{gathered}$			
				Typ	Min	Max	Min	Max	Min	Max	Min	Max		
Propagation	$\mathrm{t}_{\text {PLH }}$	A	B	9.1	2.0	8.8	1.5	5.8	1.0	4.0	1.0	3.2	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
delay time	$\mathrm{t}_{\text {PHL }}$			9.1	2.0	8.8	1.5	5.8	1.0	4.0	1.0	3.2		
	$\mathrm{t}_{\text {PLH }}$	B	A	4.0	1.0	4.2	1.0	3.8	1.0	3.4	1.0	3.2		
	$\mathrm{t}_{\text {PHL }}$			4.0	1.0	4.2	1.0	3.8	1.0	3.4	1.0	3.2		
Output	t_{Hz}	DIR	A	4.0	1.0	4.5	1.0	4.5	1.0	4.5	1.0	4.5	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Disable time	tLz			4.0	1.0	4.5	1.0	4.5	1.0	4.5	1.0	4.5		
	t_{Hz}	DIR	B	11.2	2.0	10.2	1.5	8.0	1.0	6.0	1.0	5.5		
	tız			11.2	2.0	10.2	1.5	8.0	1.0	6.0	1.0	5.5		
Output	$\mathrm{t}_{\mathrm{zH}}{ }^{{ }^{1}}$	DIR	A	15.2	-	14.4	-	11.8	-	9.4	-	8.7	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Enable time	$\mathrm{tzL}{ }^{\text {* }}$			15.2	-	14.4	-	11.8	-	9.4	-	8.7		
	$\mathrm{tzH}^{*}{ }^{* 1}$	DIR	B	13.1	-	13.3	-	10.3	-	8.5	-	7.7		
	$\mathrm{tzL}^{{ }^{\text {¹ }}}$			13.1	-	13.3	-	10.3	-	8.5	-	7.7		

Note: 1. The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 12.

Item	Symbol	From (input)	$\begin{gathered} \text { To } \\ \text { (output) } \end{gathered}$	$\mathrm{V}_{\text {CCA }}=2.5 \pm 0.2 \mathrm{~V}$										
				$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CCB}}= \\ 1.2 \mathrm{~V} \\ \hline \text { Typ } \\ \hline \end{array}$			$\mathrm{Ta}=$	40 to	$85^{\circ} \mathrm{C}$				Unit	Test conditions
					$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.5 \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.8 \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.5 \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.3 \pm 0.3 \mathrm{~V} \end{gathered}$			
					Min	Max	Min	Max	Min	Max	Min	Max		
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	A	B	9.5	2.0	9.2	1.5	6.0	1.0	4.2	1.0	3.4	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
	$\mathrm{t}_{\text {PHL }}$			9.5	2.0	9.2	1.5	6.0	1.0	4.2	1.0	3.4		
	tpLH	B	A	4.7	1.0	4.8	1.0	4.6	1.0	4.2	1.0	4.0		
	$\mathrm{t}_{\text {PHL }}$			4.7	1.0	4.8	1.0	4.6	1.0	4.2	1.0	4.0		
Output	t_{Hz}	DIR	A	4.2	1.0	4.7	1.0	4.7	1.0	4.7	1.0	4.7	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Disable time	tLz			4.2	1.0	4.7	1.0	4.7	1.0	4.7	1.0	4.7		
	t_{Hz}	DIR	B	11.2	2.0	10.6	1.5	8.4	1.0	6.0	1.0	6.0		
	tız			11.2	2.0	10.6	1.5	8.4	1.0	6.0	1.0	6.0		
Output	$\mathrm{tzH}^{* 1}$	DIR	A	15.9	-	15.4	-	13.0	-	10.2	-	10.0	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Enable time	$\mathrm{tzL}^{{ }^{\text {* }}{ }^{1}}$			15.9	-	15.4	-	13.0	-	10.2	-	10.0		
	$\mathrm{tzH}^{*}{ }^{\text {¹ }}$	DIR	B	13.7	-	13.9	-	10.7	-	8.9	-	8.1		
	$\mathrm{tzL}^{{ }^{* 1}}$			13.7	-	13.9	-	10.7	-	8.9	-	8.1		

Note: 1. The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 12.

Switching Characteristics (Cont.)

Item	Symbol	From (input)	To (output)	$\mathrm{V}_{\mathrm{CCA}}=1.8 \pm 0.15 \mathrm{~V}$										
				$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$									Unit	Test conditions
				$\begin{aligned} & \mathrm{V}_{\mathrm{CCB}}= \\ & 1.2 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.5 \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.8 \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.5 \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.3 \pm 0.3 \mathrm{~V} \end{gathered}$			
				Typ	Min	Max	Min	Max	Min	Max	Min	Max		
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	A	B	9.8	2.0	9.6	1.5	6.5	1.0	4.6	1.0	3.8	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
	tpHL			9.8	2.0	9.6	1.5	6.5	1.0	4.6	1.0	3.8		
	$\mathrm{t}_{\text {PLH }}$	B	A	6.4	1.5	7.2	1.5	6.5	1.5	6.0	1.5	5.8		
	tPHL			6.4	1.5	7.2	1.5	6.5	1.5	6.0	1.5	5.8		
Output	t_{Hz}	DIR	A	5.5	1.5	7.5	1.5	7.5	1.5	7.5	1.5	7.5	ns	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Disable time	t_{Lz}			5.5	1.5	7.5	1.5	7.5	1.5	7.5	1.5	7.5		
	t_{Hz}	DIR	B	12.0	2.0	11.5	1.5	9.2	1.0	7.2	1.0	7.0		
	tız			12.0	2.0	11.5	1.5	9.2	1.0	7.2	1.0	7.0		
Output	$\mathrm{t}_{\mathrm{zH}}{ }^{{ }^{1}}$	DIR	A	18.4	-	18.7	-	15.7	-	13.2	-	12.8	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Enable time	$\mathrm{tzL}^{*}{ }^{\text {¹ }}$			18.4	-	18.7	-	15.7	-	13.2	-	12.8		
	$\mathrm{tzH}^{*}{ }^{* 1}$	DIR	B	15.3	-	17.1	-	14.0	-	12.1	-	11.3		
	$\mathrm{tzL}^{{ }^{* 1}}$			15.3	-	17.1	-	14.0	-	12.1	-	11.3		

Note: 1. The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 12.

Item	Symbol	$\begin{gathered} \text { From } \\ \text { (input) } \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { To } \\ \text { (output) } \end{array}$	$\mathrm{V}_{\text {CCA }}=1.5 \pm 0.1 \mathrm{~V}$										
				$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CCB}}= \\ 1.2 \mathrm{~V} \\ \hline \text { Typ } \\ \hline \end{array}$			$\mathrm{Ta}=$	40 to	$85^{\circ} \mathrm{C}$				Unit	Test conditions
					$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.5 \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 1.8 \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 2.5 \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}= \\ 3.3 \pm 0.3 \mathrm{~V} \end{gathered}$			
					Min	Max	Min	Max	Min	Max	Min	Max		
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	A	B	10.0	2.0	10.5	1.5	7.2	1.0	4.8	1.0	4.2	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
	$\mathrm{t}_{\text {PHL }}$			10.0	2.0	10.5	1.5	7.2	1.0	4.8	1.0	4.2		
	tpLH	B	A	8.0	2.0	10.5	2.0	9.6	2.0	9.2	2.0	8.8		
	$\mathrm{t}_{\text {PHL }}$			8.0	2.0	10.5	2.0	9.6	2.0	9.2	2.0	8.8		
Output	t_{Hz}	DIR	A	6.0	2.0	10.0	2.0	10.0	2.0	10.0	2.0	10.0	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Disable time	tız			6.0	2.0	10.0	2.0	10.0	2.0	10.0	2.0	10.0		
	t_{Hz}	DIR	B	12.5	2.0	12.7	1.5	12.0	1.0	10.7	1.0	7.5		
	tız			12.5	2.0	12.7	1.5	12.0	1.0	10.7	1.0	7.5		
Output	$\mathrm{tzH}^{* 1}$	DIR	A	20.5	-	23.2	-	21.6	-	19.9	-	16.3	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
Enable time	$\mathrm{tzL}^{{ }^{\text {* }}{ }^{1}}$			20.5	-	23.2	-	21.6	-	19.9	-	16.3		
	$\mathrm{tzH}^{*}{ }^{\text {¹ }}$	DIR	B	16.0	-	20.5	-	17.2	-	14.8	-	14.2		
	$\mathrm{tzL}^{{ }^{* 1}}$			16.0	-	20.5	-	17.2	-	14.8	-	14.2		

Note: 1. The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 12.

Switching Characteristics (Cont.)

Note:

1. The enable time is a calculated value, derived using the formula shown in the section entitled enable times on page 12.

Operating Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Symbol	$\mathbf{V}_{\mathbf{C C A}}(\mathbf{V})$	$\mathbf{V}_{\mathbf{C C B}}(\mathbf{V})$	Min	Typ	Max	Unit	Test conditions
Power dissipation capacitance	C_{PD}	3.3	3.3	-	12	-	pF	$\mathrm{f}=10 \mathrm{MHz}$ $\mathrm{C}_{\mathrm{L}}=0$

Power-up considerations

Level-translation devices offer an opportunity for successful mixed-voltage signal design.
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins.

Take these precautions to guard against such power-up problems.

1. Connect ground before any supply voltage is applied.
2. Next, power up the control side of the device. (Power up of $\mathrm{V}_{\mathrm{CCA}}$ is first. Next power up is $\mathrm{V}_{\mathrm{CCB}}$)
3. Depending on the direction of the data path, DIR can be high or low. If DIR high is needed (A data to B bus), ramp it with $\mathrm{V}_{\text {CCA }}$. Otherwise, DIR low is needed (B data to A bus), ramp it with GND.

Test Circuit

Symbol	S1
$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PHL}}$	OPEN
$\mathrm{t}_{\mathrm{ZH}} / \mathrm{t}_{\mathrm{HZ}}$	GND
$\mathrm{t}_{\mathrm{ZL}} / \mathrm{t}_{\mathrm{LZ}}$	$2 \times \mathrm{V}_{\mathrm{CC}}$

Note: 1. C_{L} includes probe and jig capacitance.

- Waveforms - 2

| Symbol | $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$, |
| :---: | :---: | :---: | :---: | :---: |
| $1.5 \pm 0.1 \mathrm{~V}$ | | $\mathrm{~V}_{\mathrm{CC}}=1.8 \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} . \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$.

Notes: 1. Input waveform : PRR $\leq 10 \mathrm{MHz}, \mathrm{Zo}=50 \Omega$, duty cycle 50%.
2. Waveform - 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
3. Waveform - 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. The output are measured one at a time with one transition per measurement.

Application Information

Figure 1 is an example circuit of the RD74VT1G245 being used in a bidirectional logic level-shifting application.

Figure 1. Bidirectional Logic Level-Shifting Application

Pin Description

PIN	NAME	FUNCTION	
1	DIR	DIR	The GND (low-level) determines B-port to A-port direction
2	A	OUT	Output level depends on $\mathrm{V}_{\mathrm{CC} 1}$ voltage
3	GND	GND	Device GND
4	B	IN	Input threshold value depends on $\mathrm{V}_{\mathrm{CC} 2}$ voltage
5	$\mathrm{~V}_{\mathrm{CCB}}$	$\mathrm{V}_{\mathrm{CC} 2}$	SYSTEM-2 supply voltage $(1.2 \mathrm{~V}$ to 3.6 V$)$
6	$\mathrm{~V}_{\mathrm{CCA}}$	$\mathrm{V}_{\mathrm{CC1}}$	SYSTEM-1 supply voltage $(1.2 \mathrm{~V}$ to 3.6 V$)$

Application Information (Cont.)

Figure 2 shows the RD74VT1G245 used in a bidirectional logic level-shifting application. Since the RD74VT1G245 does not have an output enable (OE) pin, the system designer should take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.

Figure 2. Bidirectional Logic Level-Shifting Application

Calculate the enable times for the RD74VT1G245 using the following formulas:

1. $\mathrm{t}_{\mathrm{ZH}}($ DIR to A$)=\mathrm{t}_{\mathrm{LZ}}($ DIR to B$)+\mathrm{t}_{\text {PLH }}(\mathrm{B}$ to A$)$
2. $\mathrm{t}_{\mathrm{ZL}}($ DIR to A$)=\mathrm{t}_{\mathrm{HZ}}($ DIR to B$)+\mathrm{t}_{\mathrm{PHL}}(\mathrm{B}$ to A$)$
3. $\mathrm{t}_{\mathrm{ZH}}($ DIR to B$)=\mathrm{t}_{\mathrm{LZ}}($ DIR to A$)+\mathrm{t}_{\text {PLH }}(\mathrm{A}$ to B$)$
4. $\mathrm{t}_{\mathrm{ZL}}($ DIR to B$)=\mathrm{t}_{\mathrm{HZ}}($ DIR to A$)+\mathrm{t}_{\mathrm{PHL}}(\mathrm{A}$ to B$)$

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the RD74VT1G245 initially is transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blidg, 2--6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party . Rens aspumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
or system that is used under circumstances in which human life Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater

The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

