14-Bit Registered Buffer PC2700-/PC3200-Compliant #### **Features** - Differential Clock Inputs up to 280 MHz - Supports LVTTL switching levels on the RESET pin - · Output drivers have controlled edge rates, so no external resistors are required - Two KV ESD protection - Latch-up performance exceeds 100 mA: JESD78, Class II - Conforms to JEDEC STD (JESD82-3) for buffered DDR **DIMMs** - 48-pin TSSOP ### **Description** This 14-bit registered buffer is designed specifically for 2.3V to $2.7V\ V_{DD}$ operation and is characterized for operation from 0°C to + 85°C. All inputs are compatible with the JEDEC Standard for SSTL 2, except the LVCMOS reset (RESET) input. All outputs are SSTL_2, Class II-compatible. The SSTV16857 operates from a differential clock (CLK and CLK). Data is measured at the crossing of CLK going HIGH, and CLK going LOW. When $\overline{\text{RESET}}$ is LOW, the differential input receivers are disabled, and undriven (floating) data, clock, and REF voltage inputs are allowed. In addition, when RESET is LOW, all registers are reset and all outputs force to the LOW state. The LVCMOS RESET input must always be held at a valid logic HIGH or LOW level. To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up. In the DDR registered DIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the outputs will be driven LOW quickly, relative to the time to disable the differential input receivers, thus ensuring no glitches on the output. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the LOW-to-HIGH transition of RESET until the input receivers are fully enabled, the design must ensure that the outputs will remain LOW. Rev 1.0, November 21, 2006 Page 1 of 7 # **Pin Description** | Pin | Name | I/O | Туре | Description | |--|----------|--------|------|--| | 34 | RESET | I | | | | 3,8,13,17,22,27,36,46 | VSS | Ground | | Ground. | | 28, 37, 45 | VDD | Power | | 2.5V nominal supply voltage. | | 1, 2, 5, 6, 7, 10, 11, 14, 15, 18, 19, 20, 23, 24 | Q(1:14) | 0 | | Data outputs, SSTL_2, Class II output. | | 25, 26, 29, 30, 31, 32, 33, 40, 41, 42, 43, 44, 47, 48 | D(1:14) | I | | Data input clocked on the crossing of the rising edge of CLK, and the falling edge of CLK. | | 39, 38 | CLK, CLK | 1/1 | | Differential clock input. | | 4, 8, 12, 16, 21 | VDDQ | Power | | Power supply voltage quiet, 2.5V nominal. | | 35 | VREF | ı | | Input reference voltage, 1.25V nominal. | # Absolute Maximum Conditions[1, 2, 3] This device contains circuitry designed to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, $V_{\rm in}$ and $V_{\rm out}$ should be constrained to the range: $$V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}.$$ Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}). | Parameter | Description | Condition | Min. | Max. | Unit | |----------------------------------|--|-----------------------------|---------|-----------|-------| | V_{DD} | Supply Voltage ^[4] | Non-functional | 2.3 | 2.7 | VDC | | V_{DD} | Operating Voltage ^[4] | Functional | 2.3 | 2.7 | VDC | | V _{in} | Input Voltage | Relative to V _{SS} | 0 | V_{DD} | VDC | | V _{out} | Output Voltage | Relative to V _{SS} | | V_{DDQ} | VDC | | I _{OUT} | DC Output Current | | | ±50 | mA | | I _{IK} | Continuous Clamp Current | $V_I < 0$ or $V_I > V_{SS}$ | | ±50 | mA | | I _{OK} | Continuous Clamp Current | V _O < 0 | | -50 | mA | | I _{DD/} I _{SS} | Continuous current through each V _{DD} or V _{SS} | | | ±100 | mA | | LU _I | Latch Up Immunity | Exceeds spec of | 100 | | mA | | R _{PS} | Power Supply Ripple | Ripple Frequency < 100 kHz | | 150 | mVp-p | | T _s | Temperature, Storage | Non-functional | -65 | +150 | °C | | T _a | Temperature, Operating Ambient | Functional | 0 | +70 | °C | | Tj | Temperature, Junction | Functional | | 165 | °C | | Ø _{Jc} | Dissipation, Junction to Case | Mil-Spec 883E Method 1012.1 | 22.23 | | °C/W | | Ø _{JA} | Dissipation, Junction to Ambient | JEDEC (JESD 51) | 74.52 | | °C/W | | UL _{FL} | Flammability | By design and verification | V – 0 | | Grade | | MSL | Moisture Sensitivity | By design and verification | MSL – 1 | | Grade | | ESD _h | ESD Protection (Human Body Model) | | 2000 | | V | **Table 1. DC Electrical Specifications** (V_{DD} = Temperature = 0°C to +85 °C) | Parameter | Description | | Condition | Min. | Тур. | Max. | Unit | |------------------|--|----------------------------|---|-----------------------------|------------------|-----------------------------|------| | V _{DD} | Supply Voltage | PC1600,2100,2700
PC3200 | | 2.5 | 2.6 | 2.7 | V | | V_{DDQ} | Output Supply Voltage | PC1600,2100,2700
PC3200 | | 2.5 | 2.6 | 2.7 | V | | V _{REF} | Reference voltage (V _{REF} = V _{DDQ} /2) | PC1600,2100,2700
PC3200 | | 1.25 | 1.3 | 1.35 | V | | V _{TT} | Termination voltage | | | V _{REF} –
40 mV | V _{REF} | V _{REF} +4
0 mV | V | | V _{IH} | Input Voltage, High | | RESET | 1.7 | | | V | | V _{IL} | Input Voltage, Low | | RESET | | | 0.7 | V | | V _{OL} | Output Voltage, Low | | V_{DD}/V_{DDQ} = 2.3V to 2.7V, I_{OL} = 100 μ A, V_{DD} = 2.3 to 2.7V | | | 0.2 | V | | | | | $V_{DD}/V_{DDQ} = 2.3V$, $I_{OL} = 16$ mA, $V_{DD} = 2.3V$ | | | 0.35 | | - Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. - 3. All terminals except V_{DD}. - 4. V_{DD}/V_{DDQ} terminals. Table 1. DC Electrical Specifications (V_{DD} = Temperature = 0°C to +85 °C) (continued) | Parameter | Description | Condition | Min. | Тур. | Max. | Unit | | | | |------------------|------------------------|--|-----------------------|------|------|------|--|--|--| | V _{OH} | Output Voltage, High | $V_{DD}/V_{DDQ} = 2.3V$ to 2.7V, $I_{OH} = -100 \mu A$, $V_{DD} = 2.3$ to 2.7V | V _{DD} – 0.2 | | | V | | | | | | | $V_{DD}/V_{DDQ} = 2.3V$, $I_{OH} = -16$ mA | 1.95 | | | | | | | | I _{IL} | Input Current | | | | | | | | | | | Data Inputs | V _I = 1.7V or 0.8V, V _{REF} = 1.15V or 1.35V, V _{DD} = 2.7V | | | ±5 | μА | | | | | | | $V_I = 2.7V \text{ or } 0, V_{REF} = 1.15V \text{ or} $
1.35V, $V_{DD} = 2.7V$ | | | ± 5 | μА | | | | | | | $V_I = 1.7V \text{ or } 0.8V, V_{REF} = 1.15V \text{ or} $
1.35V, $V_{DD} = 3.6V$ | | | ± 5 | μА | | | | | | | V _I = 2.7V or 0 | | | ± 5 | μА | | | | | | CLK, CLK | V _I = 1.7V or 0.8V, V _{REF} = 1.15V or 1.35V | | | ±1 | μА | | | | | | | V _I = 2.7V or 0, V _{REF} = 1.15V or
1.35V, V _{dd} = 2.7V | | | ± 1 | μА | | | | | | RESET | $V_I = V_{DD}$ or V_{SS} , $V_{DD} = 2.7V$ | | | ± 5 | μА | | | | | | VREF | V _I = 1.5V or 1.35V, V _{DD} = 2.7 | | | ±5 | μА | | | | | I _{IH} | Input Current, High | Data inputs only | | | | mA. | | | | | I _{DD} | Dynamic Supply Current | V _I = 1.7V or 0.8V, I _O = 0, V _{DD} = 2.7V | | | 90 | mA | | | | | | | $V_I = 2.7V \text{ or } 0, I_O = 0, V_{DD} = 2.7V$ | | | 90 | mA | | | | | C _{in} | Input pin capacitance | | | | | | | | | | | RESET | V _I = 1.7V or 0.8V, I _O = 0, V _{DD} = 2.7V | | 3 | | pF | | | | | | Clock and Data Inputs | | 2.5 | 2.7 | 3.5 | pF | | | | | L _{pin} | Pin Inductance | All | 2.1 | | 4.5 | nH | | | | Table 2. AC Input Electrical Specifications (V_{DD} = 2.5 VDC ± 5%, Temperature = 0°C to +85°C) | | | | $V_{DD} = 2.5V \pm 0.2V$ | | | |--------------------|-----------------------------------|---|--------------------------|------|------| | Parameter | Description | Condition | Min. | Max. | Unit | | F _{IN} | Input Clock Frequency | CLK, CLK | | 200 | MHz | | P _W | Pulse Duration | CLK, CLK HIGH or LOW | 3.3 | | ns | | T _{ACT} | Differential Inputs Active Time | Data inputs must be LOW after RESET HIGH | 22 | | ns | | T _{INACT} | Differential Inputs Inactive Time | Data and clock inputs must be held at valid levels (not floating) after RESET LOW | 22 | | ns | | T _{SET} | Set-up Time | Fast slew rate, (see notes 5 and 7), Data before CLK, CLK | 0.75 | | ns | | | | Slow slew rate, (see notes 6 and 7), Data before CLK, CLK | 0.9 | | ns | | T _{HOLD} | Hold Time | Fast slew rate, (see notes 5 and 7), Data after CLK, CLK | 0.75 | | ns | | | | Slow slew rate (see notes 6 and 7), Data after CLK, CLK | 0.9 | | ns | | I _{Vpp} | Input Voltage, Pk-Pk | | 360 | | mV | - 5. For data signal input slew rate > 1 V/ns. 6. For data signal input slew rate > 0.5 V/ns and < 1 V/ns. 7. CLK, CLK signals input slew rates are > 1 V/ns. Table 3. AC Output Electrical Specifications (V_{DD} = 2.5V VDC \pm 5%, Temperature = $0^{\circ}C$ to $+85^{\circ}C$) | | | | $V_{DD} = 2.5V \pm 0.2V$ | | | | |------------------|-------------------------------------|-----------|--------------------------|------|------|--| | Parameter | Description | Condition | Min. | Max. | Unit | | | F _{MAX} | | | | 280 | | | | T _{DEL} | Propagation Delay from CLK/CLK to Q | Q | 1.1 | 2.8 | ns | | | T _{PHL} | RESET | Q | | 4.3 | ns | | | T _R | Rise Time | Any Q | 0.85 | 4 | V/ns | | | T _F | Fall time | Any Q | 1.0 | 4 | V/ns | | # **Output Buffer Characteristics** Table 4. Output Buffer Voltage vs. Current (V/I) Characteristics | | Pull-l | Down | Pull-Up | | | |-------------|------------|------------|-------------|------------|--| | Voltage (V) | Min I (mA) | Max I (mA) | Min I (mA) | Max I (mA) | | | 0 | 0 | 0 | 0 | 0 | | | 0.1 | 6 | 13 | -5 | –15 | | | 0.2 | 10 | 25 | -10 | -27 | | | 0.3 | 15 | 38 | -15 | -38 | | | 0.4 | 19 | 49 | -19 | -49 | | | 0.5 | 23 | 60 | -23 | -60 | | | 0.6 | 27 | 71 | -28 | -72 | | | 0.7 | 30 | 81 | –31 | -83 | | | 0.8 | 34 | 91 | -35 | -96 | | | 0.9 | 36 | 100 | -38 | -104 | | | 1.0 | 38 | 108 | -40 | -112 | | | 1.1 | 40 | 115 | -44 | -120 | | | 1.2 | 42 | 123 | -46 | -125 | | | 1.3 | 43 | 130 | -48 | -130 | | | 1.4 | 44 | 137 | -50 | -134 | | | 1.5 | 44 | 144 | – 51 | -137 | | | 1.6 | 45 | 150 | -52 | -140 | | | 1.7 | 45 | 158 | -52 | -143 | | | 1.8 | 45 | 165 | -52 | -146 | | | 1.9 | 45 | 172 | -53 | -149 | | | 2.0 | 45 | 179 | -53 | -152 | | | 2.1 | 46 | 185 | -53 | -154 | | | 2.2 | 46 | 191 | -54 | -156 | | | 2.3 | 46 | 196 | -54 | -157 | | | 2.4 | 46 | 201 | -54 | -159 | | | 2.5 | 46 | 206 | -54 | -160 | | | 2.6 | 46 | 211 | – 55 | -161 | | | 2.7 | 46 | 216 | -55 | -162 | | #### **Slew Rate** The following table describes output-buffer slew-rate characteristics that are sufficient to meet the requirements of registered DDR DIMM performance and timings. These characteristics are not necessarily production tested but can be guaranteed by design or characterization. Compliance with these rates is not mandatory if it can be adequately demonstrated that alternate characteristics meet the requirements of the registered DDR DIMM application. This information does not necessarily have to appear in the device data sheet. Obtain rise and fall time measurements by using the same procedure for obtaining "Ramp" data according to the current WIA IBIS specification. In particular it is very important to note that the following slew rates are specified at the output of the die, without package parasitics in the power, ground or output paths. The measurement points are at 20% and 80%. The slew-rate test load shall be a 50-ohm resistor to GND for Rise and a 50-ohm resistor to $V_{\mbox{\scriptsize DDQ}}$ for fall. The dV/dt ratio is reduced to V/ns. Table 5. Output Buffer Slew-Rate Characteristics | dV/dt | Min. | Max. | |-------|-----------|--------| | Rise | 0.85 V/ns | 4 V/ns | | Fall | 1.00 V/ns | 4 V/ns | # Test Configurations[9, 10] $V_{DD} = 2.5V \pm 0.2V$ #### **Timing Diagrams** Figure 1. Voltage Waveforms Set-up and Hold Times [11, 13, 14] Figure 2. Voltage Waveforms Enable and Disable Times Low- and High-level Enabling^[11] Figure 3. Voltage Waveforms Propagation Delay Times^[12] Figure 4. Voltage Waveforms Propagation Delay Times[11 Figure 5. Load Circuit^[8] Figure 6. Voltage Waveforms Pulse Duration^[13, 14] #### Notes: - 8. CL includes probe and jig capacitance. - 9. IDD tested with clock and data inputs held at VDD or VSS, and IO = 0 mA. - All input pulses are supplied by generators having the following characteristics: PRR < 10 MHz, ZO = 50 ohm input slew rate = 1 V/ns ±20% (unless otherwise specified). - 11. the outputs are measured one at a time with one transition per measurement. - 12. *VTT = VREF = VDDQ/2. - 13. **VIH = VREF + 350 mV (AC voltage levels). - 14. ***VIL = VREF 350 mV (AC voltage levels) # **Ordering Information** | Part Number | Package Type | Product Flow | |------------------|-----------------------------|--------------------------| | CY2SSTV16857ZC | 48-pin TSSOP | Commercial, 0° to 70°C | | CY2SSTV16857ZCT | 48-pin TSSOP –Tape and Reel | Commercial, 0° to 70°C | | CY2SSTV16857ZI | 48-pin TSSOP | Industrial, –40° to 85°C | | CY2SSTV16857ZIT | 48-pin TSSOP –Tape and Reel | Industrial, –40° to 85°C | | Lead-Free | | | | CY2SSTV16857ZXC | 48-pin TSSOP | Commercial, 0° to 70°C | | CY2SSTV16857ZXCT | 48-pin TSSOP –Tape and Reel | Commercial, 0° to 70°C | | CY2SSTV16857ZXI | 48-pin TSSOP | Industrial, –40° to 85°C | | CY2SSTV16857ZXIT | 48-pin TSSOP –Tape and Reel | Industrial, –40° to 85°C | # **Package Drawing and Dimensiona** ### 48-lead (240-mil) TSSOP II Z4824 While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any circuitry or specification without notice.