8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89560H Series

MB89567H/567HC/P568/PV560

- DESCRIPTION

The MB89560H series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{*}$-8L family consisting of proprietary 8 -bit, single-chip microcontrollers.
In addition to a compact instruction set, the microcontroller contains a variety of peripheral functions such as $1^{2} \mathrm{C}$ interface, timers, 2 ch PWM timers, $8 / 16$-bit timer, 21bit timebase timer, 8 bit PWC timer, 17-bit Watch prescaler, Watch-dog timer, High speed UART, 8 -bit SIO, UART/SIO, LCD controller/driver (optional booster), Two type Programmable Pulse Generators (PPG), an A/D converter, and external interrupt.
*: F²MC stands for FUJITSU Flexible Microcontroller.

FEATURES

- F^{2} MC-8L family CPU core
- Low-voltage operation (when an A/D converter is not used)
- Low current consumption (applicable to the dual-clock system)
- Minimum execution time: $0.32 \mu \mathrm{~s}$ at 12.5 MHz
- ${ }^{2} \mathrm{C}$ interface circuit
- LCD controller/driver : 24 segments $\times 4$ commons (max. 96 pixels, duty LCD mode and Static LCD mode)
- LCD booster function (option)
- Wild register (max. 6 different address locations)
- 10 -bit A/D converter: 8 channels
(Continued)

PACKAGE

80-pin Plastic LQFP

FPT-80P-M05

80-pin Plastic QFP

FPT-80P-M06

80-pin Plastic LQFP

FPT-80P-M11

80-pin Ceramic MQFP

MQP-80C-P01

MB89560H Series

(Continued)

- Three types of Serial Interface:

High Speed UART (Transfer rate from 300 to 192000 bps /10 MHz main clock)
8-bit Serial I/O (SIO)
UART/SIO

- Two type of Programmable Pulse Generator(PPG) : 6-bit PPG and 12-bit PPG
- Six types of timer

8 bit PWM 2 channels timers
8/16 bit timer/counter (8 bits $\times 2$ channels or 16 bits $\times 1$ channel)
21bit timebase timer
8 bit PWC timer operation
Watch prescaler(17 bits)
Watch-dog timer

- I/O ports: max. 50 channels
- External interrupt 1: 8 channels
- External interrupt 2 (wake-up function): 4 channels
- Low-power consumption modes (stop mode, sleep mode, and watch mode)
- LQFP-80 and QFP-80 package
- CMOS technology

PRODUCT LINEUP

Part number Parameter	MB89567H MB89567HC	MB89P568	MB89PV560
Classification	Mass production products (mask ROM products)	OTP	Piggy-back
ROM size	$\begin{gathered} 32 \mathrm{~K} \times 8 \text { bits } \\ \text { (internal mask ROM) } \end{gathered}$	$\begin{gathered} 48 \mathrm{~K} \times 8 \text { bits } \\ \text { (internal PROM) } \end{gathered}$	$56 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	$1 \mathrm{~K} \times 8$ bits		$1 \mathrm{~K} \times 8$ bits
CPU functions	Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Minimum interrupt processing time:	: 136 : 8 bits : 1 to 3 bytes : 1, 8, 16 bits : $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$	
Ports	General-purpose I/O ports (N-channel open drain) $: 20$ pins (2 shared with ${ }^{2} \mathrm{C}$ inputs, 16 shared with LCD, 2 shared with other resources) General-purpose I/O ports (CMOS) $: 30$ pins (shared with resources) Total $: 50$ pins		
21-bit timebase timer	21 bits Interrupt cycle: $2^{11}, 2^{13}, 2^{16}$ or 2^{20} tinst ${ }^{* 5}$		
Watchdog timer	Reset generate cycle: min. 2^{20} tinst for main clock, min. 2^{13} tinst for sub clock		
Watch prescaler	17 bitsInterrupt cycle: $0.50 \mathrm{~s}, 1.00 \mathrm{~s}, 2.00 \mathrm{~s}, 4.00 \mathrm{~s} / 32.768 \mathrm{KHz}$ for subclock		
8/16-bit timer/ counter	Can be operated either as a 2-channel 8-bit timer/counter (Timer 1 and Timer 2, each with its own independent operating clock cycle), or as one 16-bit timer/counter In Timer 1 or 16-bit timer/counter operation, event counter operation (external clock-triggered) and square wave output capable		
8-bit PWM 2 ch timer	8-bit interval timer operation (square wave output capable, operating clock cycle: $1,8,16,64$ tinst) 8-bit resolution PWM operation (conversion cycle: 256 to 256×64 tinst) 8/16-bit timer/counter output for counter clock selectability		

| Part number | MB89567H | MB89P568 | MB89PV560 |
| :--- | :--- | :--- | :--- | :--- |

[^0]
MB89560H Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89567H MB89567HC	MB89P568-101 MB89P568-102	MB89PV560-101 MB89PV560-102
FPT-80P-M05	\bigcirc	\bigcirc	\times
FPT-80P-M06	\bigcirc	\bigcirc	\times
FPT-80P-M11	\bigcirc	\bigcirc	\times
MQP-80C-P01	\times	\times	\bigcirc

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the OTPROM (one-time PROM) products, verify its differences from the product that will actually be used. Take particular care on the following points:

- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- For the MB89PV560, add the current consumed by the EPROM mounted in the piggy-back socket.
- When operating at low speed, the current consumed by the one-time PROM product is greater than for the mask ROM product. However, the current consumption is roughly the same in sleep or stop mode.
- (For more information, see "■ Electrical Characteristics.")

3. Mask Options

The functions available as options and the method of specifying options differ between products.
Before using options check "■ Mask Options."
4. Functionalities different between products in MB89560H series

Functionalities	MB89567H	MB89567HC	MB89P568	MB89PV560
Power-on reset wait time	Regulator Regulator re Osc.	ab. time + very. time + time	Regulator stab. time + Osc. stab. time	
Wait time for external reset in stop/sub/clock mode or wait time for external interrupt trigger recover from main stop mode	Regulator r Osc.	very time + time	Osc. stab. time	Osc. stab. time
Port pin pullup resistors	Selectable by software.			Not available.
AD conversion time	60 tinst *			33 tinst *
$I^{2} \mathrm{C}$ noise cancelling circuit	-	Always available independent of ICCR:DMBP bit selection.		Not available when ICCR:DMBP bit is asserted.

Note: For more information on tinst see " \square Electrical Characteristics (4) Instruction cycles"

* : Instruction cycle

PIN ASSIGNMENT

(Top view)

(Top view)

FPT-80P-M06
(Top view)

*1 :Pin assignment on package top (MB89PV560 only)

Pin no.	Pin name						
81	N.C.	89	AD2	97	N.C.	105	OE
82	A15	90	AD1	98	04	106	N.C.
83	A12	91	AD0	99	O5	107	A11
84	AD7	92	N.C.	100	O6	108	A9
85	AD6	93	O1	101	07	109	A8
86	AD5	94	O2	102	O8	110	A13
87	AD4	95	O3	103	CE	111	A14
88	AD3	96	VSS	104	A10	112	VCC

N.C.: Internally connected. Do not use.

PIN DESCRIPTION

Pin no.		Pin name	I/O circuit type	Function
LQFP*1 LQFP*2	MQFP*3 QFP*4			
43	45	X0	A	Crystal or other resonator connector pins for the main clock. The external clock can be connected to X 0 . When this is done, be sure to leave X1 open. CR oscillation selectability in model with a mask ROM only.
44	46	X1		
42	44	MODA	C	Memory access mode setting pins. Connect directly to VSS. Hysteresis input type.
39	41	RST	D	Reset I/O pin This pin is a CMOS output type with a pull-up resistor, and a hysteresis input type. " L " is output from this pin by an internal reset request (optional). The internal circuit is initialized by the input of " L ".
49 to 52	51 to 54	$\begin{aligned} & \text { P24/INT20 to } \\ & \text { P27/INT23 } \end{aligned}$	E	General-purpose CMOS I/O ports Also serve as an external interrupt 2 input (wake-up function). External interrupt 2 input is hysteresis input. Selectable pull-up resistor.
$\begin{gathered} 30 \text { to } 36 \\ , 38 \end{gathered}$	$\begin{aligned} & 32 \text { to } \\ & 38,40 \end{aligned}$	P10/INT10 to P17/INT17	E	General-purpose CMOS I/O ports Also serve as input for external interrupt 1 input. External interrupt 1 input is hysteresis input. Selectable pull-up resistor.
60	62	$\begin{gathered} \text { P44/UCK/ } \\ \text { SCK1 } \end{gathered}$	E	General-purpose CMOS I/O ports Also serve as the clock I/O for the High-speed UART and Serial IO. The peripheral is a hysteresis input type. Selectable pull-up resistor.
61	63	P45/UO/SO1	F	General-purpose CMOS I/O ports Also serves as the data output for the High-speed UART and Serial I/O. The peripheral is a hysteresis input type. Selectable pull-up resistor.
62	64	P46/UI/SI1	G	N -ch open drain general-purpose I/O ports Also serves as the data input for the High-speed UART and Serial I/O. The peripheral is a hysteresis input type.
63	65	P47/PWC	G	N-ch open drain general-purpose I/O port Also serve as the external clock input for PWC. The peripheral is a hysteresis input.
56	58	$\begin{gathered} \text { P40/WTO/ } \\ \text { TO11 } \end{gathered}$	F	General-purpose CMOS I/O port Also serves as an 8/16-bit timer/counter output and PWC output.

(Continued)
*1: FPT-80P-M05
*2: FPT-80P-M11
*3: MQP-80C-P01
*4: FPT-80P-M06
(Continued)

Pin no.		Pin name	$\begin{aligned} & \text { I/O circuit } \\ & \text { type } \end{aligned}$	Function
$\begin{aligned} & \text { LQFP**1 } \\ & \text { LQFP*2 } \end{aligned}$	$\begin{gathered} \text { MQFP** }^{*} \\ \text { QFP }^{* 4} \end{gathered}$			
57	59	$\begin{gathered} \text { P41/HCK/ } \\ \text { TO12 } \end{gathered}$	F	General-purpose CMOS I/O port Also serves as an 8/16-bit timer/counter output. and half of main clock output Selectable pull-up resistor.
45	47	P20/SI	E	General-purpose CMOS I/O port Also serves as the data input for the serial I/O. The peripheral is a hysteresis input type. Selectable pull-up resistor.
46	48	P21/SO	F	General-purpose CMOS I/O port Also serves as the data output for the serial I/O. Selectable pull-up resistor.
47	49	P22/SCK	E	General-purpose CMOS I/O port Also serves as the clock I/O for the serial I/O. The peripheral is a hysteresis input type. Selectable pull-up resistor.
48	50	P23/PPG1	F	General-purpose CMOS I/O port Also serves as the 6 bit programmable pulse generator. Selectable pull-up resistor.
54	56	P30/SCL	G	N-ch open-drain general-purpose I/O port Data I/O pin for ${ }^{2} \mathrm{C}$ interface
55	57	P31/SDA	G	N-ch open-drain general-purpose I/O port Data I / O pin for $\mathrm{I}^{2} \mathrm{C}$ interface
65	67	C0	-	Function as capacitor connection pin in the products with a booster.
64	66	C1	-	Function as capacitor connection pin in the products with a booster.
59	61	$\begin{aligned} & \text { P43/PWM2/ } \\ & \text { PPG2 } \end{aligned}$	F	General-purpose CMOS I/O port Also serves PWM wave output for the 8 -bit PWM timer 1 and as 12 bit programmable pulse generator output. Selectable pull-up resistor.
58	60	$\begin{gathered} \text { P42/PWM1/ } \\ \text { EC1 } \end{gathered}$	E	General-purpose CMOS I/O port Also serves as the PWM wave output and external clock for the $8 / 16$ bit timer counter. Selectable pull-up resistor.
21 to 28	23 to 30	P00/ANO to P07/AN7	J	General-purpose CMOS I/O ports Also serve as the analog input for the A/D converter. Selectable pull-up resistor.
$\begin{aligned} & 10 \text { to } 12 \\ & 14 \text { to } 18 \end{aligned}$	$\begin{aligned} & 12 \text { to } 14 \\ & 16 \text { to } 20 \end{aligned}$	$\begin{aligned} & \text { P60/SEG16 } \\ & \text { to } \\ & \text { P67/SEG23 } \end{aligned}$	H/I	N -ch open-drain general-purpose output ports Also serve as an LCD controller/driver segment output.
2 to 9	4 to 11	P50/SEG8 to P57/SEG15	H/I	N-ch open-drain general-purpose output ports Also serve as an LCD controller/driver segment output.

(Continued)
*1: FPT-80P-M05
*2: FPT-80P-M11
*3: MQP-80C-P01
*4: FPT-80P-M06

MB89560H Series

(Continued)

Pin no.		Pin name	I/O circuit type	Function
LQFP*1 LQFP*2	MQFP*3 QFP*4			
$\begin{gathered} 74 \text { to } 80, \\ 1 \end{gathered}$	$\begin{gathered} 1 \text { to } 3 \\ 76 \text { to } 80 \end{gathered}$	SEGO to SEG7	1	LCD controller/driver segment output-only pins
70 to 73	72 to 75	$\begin{gathered} \text { COM0 } \\ \text { to } \\ \text { COM3 } \end{gathered}$	1	LCD controller/driver common output-only pins
68 to 71	70 to 73	V0 to V3	-	LCD driving power supply pins.
42	44	XOA		Crystal or other resonator connector pins for the subclock
43	45	X1A	B	The external clock can be connected to XOA. When this is done, Be sure to leave X1A open.
55	57	Vcc	-	Power supply pin
39	41	C	-	Capacitor connection pin *5
15	17	Vss	-	Power supply (GND) pin
22	24	AVcc	-	A/D converter power supply pin
21	23	AVR	-	A/D converter reference voltage input pin
31	33	AVss	-	A/D converter power supply pin Use this pin at the same voltage as VSS.

*1: FPT-80P-M05
*2: FPT-80P-M11
*3: MQP-80C-P01
*4: FPT-80P-M06
*5: When MB89PV560-101 or MB89PV560-102 is used, this pin will become a NC pin without internal connection.
When MB89P568-101 or MB89P568-102 is used, this pin will be select a regulator stabilization delay time.
If 5V used in MB89P568-101 or MB89P568-102, this pin must be connected to Vss. If 3V used in MB89P568-101 or MB89P568-102, this pin must be connected to Vcc. If MB89567H or MB89567HC is used, $0.1 \mu \mathrm{~F}$ capacitor should connect to this pin.

PIN DESCRIPTION FOR EXTERNAL EPROM SOCKET (MB89PV560 ONLY)

Pin no.	Pin name	I/O	Function
82	A15		
83	A12		
84	A7		
85	A6		
86	A5	O	Address output pins
87	A4	O	Address output pins
88	A3		
89	A2		
90	A1		
91	A0		
93	O1		
94	O2	1	Data input pins
95	O3		
96	Vss	O	Power supply (GND) pin
98	O4		
99	O5		
100	O6	1	Data input pins
101	07		
102	O8		
103	$\overline{C E}$	O	ROM chip enable pin Outputs "H" during standby.
104	A10	O	Address output pin
105	$\overline{O E} / V_{p p}$	O	ROM output enable pin Outputs "L" at all times.
107	A11	O	Address output pins
108	A9		
109	A8		
110	A13	O	
111	A14	O	
112	Vcc	O	EPROM power supply pin
81			
92	N.		Internally connected pins
97	N.C.	-	Be sure to leave them open.
106			

MB89560H Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		Main clock (main clock crystal oscillator) - At an oscillation feedback resistor of approximately 1 M $\Omega / 5.0 \mathrm{~V}$ - CR oscillation is selectable (mask products only)
B		Subclock (subclock crystal oscillator) - At an oscillation feedback resistor of approximately 4.5 $\mathrm{M} \Omega / 5.0 \mathrm{~V}$
C	$\square \square^{\square}$	- Hysteresis input
D		- CMOS output - Hysteresis input - At an output pull-up resistor (P-ch) of approximately 50 k $\Omega / 5.0 \mathrm{~V}$
E		- CMOS output - CMOS input - The peripheral is a hysteresis input type. - Selectable pull-up resistor (P-ch) of approximately 50 k $\Omega / 5.0 \mathrm{~V}$

(Continued)
(Continued)

Type	Circuit	Remarks
F		- CMOS output - CMOS input - Selectable pull-up resistor (P-ch) of approximately 50 k $\Omega / 5.0 \mathrm{~V}$
G		- N -ch open-drain input/output - CMOS input - The peripheral is a hysteresis input type.
H		- N-ch open-drain output - CMOS input
1		- LCD controller/driver common/segment output
J		- General CMOS I/O - Analog input (A/D converter) - Selectable pull-up resistor (P-ch) of approximately 50 k $\Omega / 5.0 \mathrm{~V}$ - Pull-up resistors must be disabled when used as an analog input).

MB89560H Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (V cc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A / D and D / A Converters

Connect to be AV cc $=\mathrm{DAVC}=\mathrm{V}_{\mathrm{cc}}$ and AV ss $=A V R=\mathrm{V}_{s s}$ even if the A / D and D / A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard V cc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset and wake-up from stop mode.

PROGRAMMING TO THE EPROM ON THE MB89P568

The MB89P568 is an OTPROM version of the MB89567H and MB89567HC.

1. Features

- 48-Kbyte PROM on chip
- Equivalency to the MBM271001A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

Normal operation		
$\begin{aligned} & 0000 \mathrm{H} \\ & \mathbf{0 0 8 O H} \end{aligned}$	I/O	
	RAM	
0480H	Not availableEPROM mode (Corresponding addresses on the EPROM programmer	
4000 H	Program area (PROM)	Program area (PROM)

3. Programming to the EPROM

In EPROM mode, the MB89P568 functions equivalent to the MBM27C1001A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure

(1) Set the EPROM programmer to the MBM27C1001A.
(2) Load program data into the EPROM programmer at 4000_{H} to $\mathrm{FFFF}_{\mathrm{H}}$
(3) Program with the EPROM programmer.

MB89560H Series

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-80P-M05	ROM-80SQF-32DP-8LA
FPT-80P-M06	ROM-80QF-32DP-8LA2
FPT-80P-M11	ROM-80SQF-32DP-8LA

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C512-20TV

2. Programming Socket Adaptor

To program to the PROM using an EPROM programmer, use the socket adaptor (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adaptor socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-5396-9106
3. Memory Space

4. Programming to EPROM

(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at 2000 H to FFFFH.
(3) Program to 2000 H to FFFFH with the EPROM programmer.

MB89560H Series

BLOCK DIAGRAM

CPU CORE

1. Memory Space

The microcontrollers of the MB89560H series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located the lowest address. The data area is provided immediately above the I/ O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89560H series is structured as illustrated below.

MB89560H Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following registers are provided:
Program counter (PC): A 16-bit register for indicating specifies instruction storage positions.
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX):
Extra pointer (EP):
A 16-bit register for index modification

Stack pointer (SP):
A 16-bit pointer for indicating a memory address

Program status (PS):
A 16-bit register for indicating a stack area
A 16-bit register for storing a register pointer, a condition code

16 bits		Initial value
PC	: Program counter	FFFD
A	: Accumulator	Undefined
T	: Temporary accumulator	Undefined
IX	: Index register	Undefined
EP	: Extra pointer	Undefined
SP	: Stack pointer	Undefined
PS	: Program status I-fla	= $0, \mathrm{LL} 1,0=$

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89560H Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit resister for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 32 banks can be used on MB89567H and MB89567HC. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

I/O MAP

Address	Register name	Register Description	Read/Write	Initial value
00-	PDR0	Port 0 data register	R/W	XXXXXXXX ${ }_{\text {¢ }}$
01н	DDR0	Port 0 data direction register	W	00000000в
02н	PDR1	Port 1 data register	R/W	XXXXXXXX
03н	DDR1	Port 1 data direction register	W	00000000в
04H-06н	(Vacancy)			
07\%	SYCC	System clock control register	R/W	XXXMM100в
08H	STBC	Standby control register	R/W	00010XXX ${ }_{\text {¢ }}$
09н	WDTC	Watchdog timer control register	W	0XXXXXXX ${ }_{\text {в }}$
ОАн	TBTC	Timebase timer control register	R/W	00XXX000в
OBH	WPCR	Watch prescaler control register	R/W	00XX0000в
$0 \mathrm{CH}_{\mathrm{H}}$	PDR2	Port 2 data register	R/W	XXXXXXXX
OD ${ }_{\text {H }}$	DDR2	Port 2 data direction register	R/W	00000000в
ОЕн	PDR3	Port 3 data register	R/W	XXXXXX11в
OF\%	PDR4	Port 4 data register	R/W	XXXXXXXXв
10н	DDR4	Port 4 direction register	R/W	00000000в
11н	PDR5	Port 5 data register	R/W	00000000в
12н	(Vacancy)			
13н	PDR6	Port 6 data register	R/W	00000000в
14н-19н	(Vacancy)			
$1 \mathrm{AH}^{\text {H}}$	T2CR	Timer2 control register	R/W	X000XXX0в
1BH	T2DR	Timer2 data register	R/W	XXXXXXXX
$1 \mathrm{CH}_{\mathrm{H}}$	T1CR	Timer1 control register	R/W	X000XXX0в
1D ${ }_{\text {H }}$	T1DR	Timer1 data register	R/W	XXXXXXXX
1Ен-21н	(Vacancy)			
22н	SMC11	UART1 mode control register 1	R/W	00000000в
23н	SRC1	UART1 mode data register	R/W	XX011000в
24-	SSD1	UART1 status/data register	R/W	00100X1Хв
25 H	SIDR1/SODR1	UART1 data register	R/W	ХХХХХХХХВ
26-	SMC12	UART1 mode control register 2	R/W	XX100001в
27H	CNTR1	PWM control register 1	R/W	00000000в
28H	CNTR2	PWM control register 2	R/W	000X0000в
29н	CNTR3	PWM control register 3	R/W	Х000XXXX
2 2н $^{\text {¢ }}$	COMR1	PWM compare register 1	W	XXXXXXXX
2 BH	COMR2	PWM compare register 2	W	XXXXXXXX
2 CH	PCR1	PWC pulse width control register 1	R/W	000XX000в
2Dн	PCR2	PWC pulse width control register 2	R/W	00000000в
2 E	RLBR	PWC reload buffer register	R/W	ХХХХХХХХХв
2 FH	SMC21	UART2/SIO mode control register	R/W	00000000в
30 H	SMC22	UART2/SIO mode control register 2	R/W	00000000в

(Continued)

MB89560H Series

(Continued)

Address	Register name	Register Description	Read/Write	Initial value
31н	SSD2	UART2/SIO status/data register	R/W	00001 ХХХв
32н	SIDR2/SODR2	UART2/SIO data register	R/W	XXXXXXXX
33	SRC2	UART2/SIO rate control register	R/W	XXXXXXXX
34	ADC1	A/D control register 1	R/W	Х00000ХОв
35	ADC2	A/D control register 2	R/W	X0000001в
36	ADDL	A/D data register L	R/W	XXXXXXXX
37	ADDH	A/D data register H	R/W	ХХХХХХХХХв
38	RCR21	PPG control register 1(PPG2)	R/W	00000000в
39	RCR23	PPG control register 2(PPG2)	R/W	0X000000в
ЗАн	RCR22	PPG control register 3(PPG2)	R/W	ХХ000000в
3Вн	RCR24	PPG control register 4(PPG2)	R/W	ХХ000000в
3Сн-3Ен	(Vacancy)			
$3 \mathrm{~F}_{\mathrm{H}}$	EIC1	External interrupt 1 control register 1	R/W	00000000в
40H	EIC2	External interrupt 1 control register 2	R/W	00000000в
41H	EIC3	External interrupt 1 control register 3	R/W	00000000в
42н	EIC4	External interrupt 1 control register 4	R/W	00000000в
43H-50H	(Vacancy)			
51н	IBSR	${ }^{2} \mathrm{C}$ bus status register	R	00000000в
52H	IBCR	$1^{1} \mathrm{C}$ bus control register	R/W	00000000в
53н	ICCR	$1^{2} \mathrm{C}$ clock control register	R/W	$000 \times X X X X$ в
54	IADR	$1^{1} \mathrm{C}$ address register	R/W	XXXXXXXX
55	IDAR	$1^{2} \mathrm{C}$ data register	R/W	XXXXXXXX
56	EIE2	External interrupt 2 enable register	R/W	XXXX0000в
57 ${ }^{\text {r }}$	EIF2	External interrupt 2 flag register	R/W	XXXXXXX0в
58н	RCR1	PPG control register 1(PPG1)	R/W	00000000в
59н	RCR2	PPG control register 2(PPG1)	R/W	0X000000в
5Ан	CKR	Clock Output control register	R/W	00000000в
5Вн	LCR1	LCD controller/driver control register 1	R/W	00010000в
5 CH	LCR2	LCD controller/driver control register 1	R/W	00000000в
5D	LCR3	LCD controller/driver control register 1	R/W	XX000000в
5Ен	LDR1	LCD data register 1	R/W	XXXXXXXX
5 FH	(Vacancy)			
60H-6F\%	VRAM	Display RAM	R/W	XXXXXXXX ${ }^{\text {B }}$
70	SMR	Serial I/O mode register	R/W	00000000в
71н	SDR	Serial I/O data register	R/W	ХХХХХХХХв
72н	PURR0	Pull-up resister register 0	R/W	11111111в
73	PURR1	Pull-up resister register 1	R/W	11111111в
74	PURR2	Pull-up resister register 2	R/W	11111111в
75	PURR4	Pull-up resister register 4	R/W	XX111111в
76	(Vacancy)			

(Continued)
(Continued)

Address	Register name	Register Description	Read/Write	Initial value
77_{H}	WREN	Wild register enable register	R/W	XX000000
78_{H}	WROR	Wild register data test register	R/W	XX000000
79_{H}	ADEN	A/D port input enable register	R/W	11111111_{B}
$7 \mathrm{~A}_{\mathrm{H}}$	(Vacancy)			
$7 \mathrm{BH}_{\mathrm{H}}$	ILR1	Interrupt level setting register 1	W	11111111_{B}
$7 \mathrm{C}_{\mathrm{H}}$	ILR2	Interrupt level setting register 2	W	11111111_{B}
$7 \mathrm{D}_{\mathrm{H}}$	ILR3	Interrupt level setting register 3	W	11111111_{B}
$7 \mathrm{EH}_{\mathrm{H}}$	ILR4	Interrupt level setting register 4	W	11111111_{B}
$7 \mathrm{~F}_{\mathrm{H}}$	ITR	Interrupt test register	Access Prohibited	11111111_{B}

EXTEND I/O MAP

Address	Register name	Register description	Read/Write	Initial value
480н	WRARH1	Wild register high-byte address register1	R/W	XXXXXXXX
481H	WRARL1	Wild register low-byte address register1	R/W	XXXXXXXX
482н	WRDR1	Wild register data register1	R/W	XXXXXXXX
483н	WRARH2	Wild register high-byte address register2	R/W	XXXXXXXXB
484	WRARL2	Wild register low-byte address register2	R/W	XXXXXXXXB
485	WRDR2	Wild register data register2	R/W	XXXXXXXXB
486н	WRARH3	Wild register high-byte address register3	R/W	ХХХХХХХХв
487 ${ }^{\text {H }}$	WRARL3	Wild register low-byte address register3	R/W	XXXXXXXXв
488н	WRDR3	Wild register data register3	R/W	ХХХХХХХХв
489н	WRARH4	Wild register high-byte address register4	R/W	XXXXXXXXв
48 Ан	WRARL4	Wild register low-byte address register4	R/W	XXXXXXXX
48В	WRDR4	Wild register data register4	R/W	XXXXXXXX
48 CH	WRARH5	Wild register high-byte address register5	R/W	XXXXXXXX
48D	WRARL5	Wild register low-byte address register5	R/W	XXXXXXXX
48Ен	WRDR5	Wild register data register5	R/W	XXXXXXXX
48 FH	WRARH6	Wild register high-byte address register6	R/W	XXXXXXXX
490н	WRARL6	Wild register low-byte address register6	R/W	XXXXXXXX
491H	WRDR6	Wild register data register6	R/W	XXXXXXXX

- Read/write access symbols

R/W: Readable and writable
R: Read-only
W: Write-only

- Initial value symbols

0 : The initial value of this bit is " 0 ".
1: The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.
M : The initial value of this bit is determined by mask option.

Note:Do not use vacancies.

MB89560H Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	Vss - 0.3	Vss +6.0	V	MB89567H, MB89567HC, MB89P568 and MB89PV560
	AVR	Vss -0.3	Vss +6.0	V	
Program voltage	VPP	Vss-0.6	Vss +13.0	V	Only for the MB89P568
Input voltage	V	Vss-0.3	Vcc +0.3	V	For pins other than P30 and P31
		Vss-0.3	Vss +6.0	V	For P30 and P31
Output voltage	Vo	Vss-0.3	V cc +0.3	V	For pins other than P30 and P31
		Vss-0.3	Vss +6.0	V	For P30 and P31
"H" level maximum output current	loL	-	15	mA	
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	Σ lob	-	100	mA	
"L" level total average output current	Elolav	-	40	mA	Average value (operating current \times operating rate)
"H" level maximum output current	Іон	-	-15	mA	
"H" level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	ミ1он	-	-50	mA	
"H" level total average output current	\sum lohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	PD	-	300	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: Use $A V c c$ and $V_{c c}$ set at the same voltage.
Take care so that AVR and $\mathrm{AVcc}+0.3 \mathrm{~V}$ does not exceed Vcc , such as when power is turned on.
Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	3.5*	5.5*	V	For MB89567H and MB89567HC
		3.0	5.5	V	Retains the RAM state in stop mode for MB89567H and MB89567HC
		2.7^{*}	5.5*	V	For MB89PV560 and MB89P568
		1.5	5.5	V	Retains the RAM state in stop mode for MB89PV560 and MB89P568
A/D converter reference input voltage	AVR	3.5	AVcc	V	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values depend on the operating conditions and the analog assurance range. See Figure 1, Figure 2, Figure 3 and " 5 . A/D Converter Electrical Characteristics."

Figure 1 Operating Voltage vs. Main Clock Operating Frequency

MB89560H Series

3. DC Characteristics

$\left(A V_{c c}=V_{c c}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	VIH	P00 to P07, P10 to P17, P20 to P27, P30 to P37 P40 to P45	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	VIHS	RST, MODA INT10 to INT17, INT20 to INT23, SI,SCK,EC1,UCK, SCK1,UI,SI1,PWC	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	VIHSMB		-	Vss +1.4	-	$V \mathrm{ss}+5.5$	V	SMB input buffer selected
	VIHIIC	SDL,	-	0.7 Vcc	-	$\mathrm{V} c \mathrm{c}+0.3$	V	I2C input buffer selected
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { P40 to P45 } \end{aligned}$	-	Vss-0.3	-	0.3 Vcc	V	
	Vıls	RST, MODA INT10 to INT17, INT20 to INT23, SI,SCK,EC1,UCK, SCK1,UI,SI1,PWC	-	Vss-0.3	-	0.2 Vcc	V	
	VILSmb	SCL, SDA	-	Vss - 0.3	-	Vss +0.6	V	SMB input buffer selected
	VILİC		-	Vss-0.3	-	0.3 Vcc	V	I2C input buffer selected
Open-drain output pin application voltage	V	$\begin{aligned} & \text { P60 to P67 } \\ & \text { P50 to P57 } \\ & \text { P46, P47 } \\ & \text { P30, P31 } \end{aligned}$	-	Vss-0.3	-	$\mathrm{V} c \mathrm{c}+0.3$	V	
"H" level output voltage	Voн	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P40 to P45 } \end{aligned}$	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	4.0	-	-	V	
		P20 to P27	$\mathrm{IOH}=-15.0 \mathrm{~mA}$					
"L" level output voltage	Vol	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P30 to P31, } \\ & \text { P40 to P47, } \\ & \text { P50 to P57, } \\ & \text { P60 to P67, RST } \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
		P20 to P27	$\mathrm{loL}=15.0 \mathrm{~mA}$					

(Continued)
(Continued)
$\left(\mathrm{A} \mathrm{V}_{c c}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current	Icc 1	Vcc ${ }^{\text {c }}$	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \mathrm{t}_{\text {inst }}{ }^{3}=0.4 \mu \mathrm{~s} \end{aligned}$ Main clock run mode	-	15	20	mA	MB89PV560 MB89P568
				-	6	10		MB89567H MB89567HC
	Icc2		$\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=10.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }^{3}=6.4 \mu \mathrm{~s} \end{aligned}$ Main clock run mode	-	5	8.5	mA	MB89PV560 MB89P568
				-	1.5	3		$\begin{aligned} & \text { MB89567H } \\ & \text { MB89567HC } \end{aligned}$
	Iccs1		$\begin{aligned} & \mathrm{F} \mathrm{CH}=10.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }^{3}=0.4 \mu \mathrm{~s} \end{aligned}$ Main clock sleep mode	-	5	7	mA	MB89PV560 MB89P568
				-	2	4		MB89567H MB89567HC
	Iccs2		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }^{3}=6.4 \mu \mathrm{~s} \end{aligned}$ Main clock sleep mode	-	1.5	3	mA	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	1	2		MB89567H MB89567HC
	Iccl		$\begin{aligned} & \mathrm{FCL}=32.768 \mathrm{kHz} \\ & \mathrm{VCC}=5.0 \\ & \text { Subclock mode } \end{aligned}$	-	3	7	mA	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	20	50	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89567H } \\ & \text { MB89567HC } \end{aligned}$
	Iccls		$\begin{aligned} & \mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz} \\ & \mathrm{~V} \mathrm{Cc}=5.0 \mathrm{~V} \\ & \text { Subclock sleep } \\ & \text { mode } \end{aligned}$	-	30	50	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	15	30		$\begin{aligned} & \text { MB89567H } \\ & \text { MB89567HC } \end{aligned}$
	Icct		$\begin{aligned} & \mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \end{aligned}$ - Watch mode - Main clock stop mode	-	5	15	$\mu \mathrm{A}$	
	Icch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ - Subclock stop mode	-	3	10	$\mu \mathrm{A}$	
	IA	AV cc	$\mathrm{F}_{\text {CH }}=10.0 \mathrm{MHz}$,	-	4	6	mA	when A / D conversion is activated
	Іан		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10.0 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \end{aligned}$	-	1	5	$\mu \mathrm{A}$	when A/D conversion is stopped

(Continued)

MB89560H Series

(Continued)
$\left(\mathrm{AV} \mathrm{Vc}=\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Input leakage current	ILI	P00 to P07, P10 to P17, P20 to P27, P40 to P45, P50 to P57, P60 to P67	0.0V < $\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-5	-	+5	$\mu \mathrm{A}$	Without pull-up Resister
		MODA		-10	-	+10	$\mu \mathrm{A}$	
Open-drain output leakage current	ILIod	$\begin{array}{\|l} \text { P30, P32 } \\ \text { P46, P47 } \end{array}$	$\begin{aligned} & 0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{ss}}+ \\ & 5.5 \mathrm{~V} \end{aligned}$	-	-	+5	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P20 to P27, P30 to P31, P40 to P45, RST	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	When pullup resistor selected except RST
LCD divided resistance	Rlcd	-	Between Vcc and Vss	300	500	750	k Ω	
COM0 to COM3 output impedance	Rvcom	COM0 to 3	3	-	-	2.5	k Ω	
SEG0 to 23 output impedance	Rvseg	SEG0 to 23	$V 1$ to $\mathrm{V} 3=5.0 \mathrm{~V}$	-	-	15	k Ω	
LCD controller/ driver leakage current	ILCDL	V0 to V3, COMO to 3 SEG0 to 23	-	-	-	± 1	$\mu \mathrm{A}$	
Input capacitance	Cln	Other than $\mathrm{AV} \mathrm{cc}, \mathrm{A} \mathrm{Vss}_{\mathrm{s}} \mathrm{V} \mathrm{cc}$, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

4. AC Characteristics

(1) Reset Timing

$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{Ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Value		Unit	Remarks
				Min.		

* : thcyl is the oscillation cycle (1/Fc) to input to the X0 pin.

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tr	-	0.5	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
For example, when the main clock is operating at $10 \mathrm{MHz}\left(\mathrm{F}_{c H}\right)$ and the oscillation stabilization time select option has been set to $2^{18} / \mathrm{F}_{\text {ch }}$, the oscillation stabilization delay time is 26.2 ms . Therefore, the maximum value of power supply rising time is about 26.2 ms .
Rapid changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Typ.	Max.		
Clock frequency	Fch	X0, X1	1	-	12.5	MHz	Main clock
	Fcı	X0A, X1A	-	32.768	-	kHz	Subclock
Clock cycle time	theyl	X0, X1	80	-	1000	ns	Main clock
	tıcyl	X0A, X1A	-	30.5	-	$\mu \mathrm{s}$	Subclock
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \mathrm{PwL}^{2} \end{aligned}$	X0	20	-	-	ns	External clock
	$\begin{aligned} & \text { Pwh } \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0A	-	15.2	-	$\mu \mathrm{s}$	External clock
Input clock rising/falling time	$\underset{\substack{\text { tck } \\ \hline}}{ }$	X0	-	-	10	ns	External clock

X0 and X1 Timing and Conditions

Main Clock Conditions

X0A and X1A Timing and Conditions

Subclock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\mathrm{CH}}, 8 / \mathrm{F}_{\mathrm{CH}}, 16 / \mathrm{F}_{\mathrm{CH}}, 64 / \mathrm{F}_{\mathrm{CH}}$	$\mu \mathrm{s}$	tinst $=0.32 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=12.5 \mathrm{MHz}\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$
		$2 / \mathrm{F}_{\mathrm{cL}}$	$\mu \mathrm{s}$	tinst $=61.036 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz}$

MB89560H Series

(5) Serial I/O Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK, SCK1, UCK	Internal shift clock mode	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tsıov	SCK, SO, SCK1, SO1, UCK, UO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsH	SI, SCK, SI1, SCK1, UI, UCK		200	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tsH1X	SCK, SI, SCK1, SII, UCK, UI		200	-	ns	
Serial clock "H" pulse width	tshsL	SCK, SCK1, UCK	External shift clock mode	1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsLsh			1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	$\begin{aligned} & \text { SCK, SO, SCK1, } \\ & \text { SO1, UCK, UO } \end{aligned}$		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsH	SI, SCK, SI1, SCK1, UI, UCK		200	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tsH1X	SCK, SI, SCK1, SI1, UCK, UI		200	-	ns	

*: For information on tinst, see "(4) Instruction Cycle."
Internal Shift Clock Mode

External Shift Clock Mode

MB89560H Series

(6) Peripheral Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tıLH1	INT10 to INT17, INT20 to INT23, EC, PWC	-	2 tins*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thill			2 tins**	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89560H Series

(7) $I^{2} C$ timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Start condition output	tsta	$\begin{aligned} & \hline \text { SCL } \\ & \text { SDA } \end{aligned}$		$\begin{gathered} 1 / 4 \text { tinst } x \\ m \times n-20 \end{gathered}$	$\begin{gathered} \hline 1 / 4 \text { tinst } \mathrm{x} \\ \mathrm{~m} \times \mathrm{n}+20 \end{gathered}$	ns	master mode
Stop condition output	tsto	$\begin{aligned} & \hline \text { SCL } \\ & \text { SDA } \end{aligned}$		$\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ (\mathrm{mxn}+8)-20 \end{gathered}$	$\begin{gathered} 1 / 4 \mathrm{tINST} \mathrm{X} \\ (\mathrm{mxn}+8)+20 \end{gathered}$	ns	master mode
Start condition detect	tsta	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$		1/4tinst $\times 6+40$	-	ns	
Stop condition detect	tsto	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$		1/4tinst X $6+40$	-	ns	
Re-start condition output	tstasu	$\begin{array}{\|l\|} \hline \text { SCL } \\ \text { SDA } \end{array}$		$\begin{gathered} 1 / 4 \text { tinst } X \\ (m \times n+8)-20 \end{gathered}$	$\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ (\mathrm{~m} \times \mathrm{n}+8)+20 \end{gathered}$	ns	master mode
Re-start condition detect	tstasu	$\begin{aligned} & \hline \text { SCL } \\ & \text { SDA } \end{aligned}$		1/4tinst $\mathrm{X} 4+40$	-	ns	
SCL output LOW width	tıow	SCL		$\begin{gathered} \hline 1 / 4 \text { tisst } \mathrm{x} \\ \mathrm{~m} \times \mathrm{n}-20 \end{gathered}$	$\begin{gathered} 1 / 4 \mathrm{tinst} \mathrm{x} \\ \mathrm{~m} \times \mathrm{n}+20 \end{gathered}$	ns	master mode
SCL output HIGH width	tнIG	SCL		$\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ (\mathrm{~m} \times \mathrm{n}+8)-20 \end{gathered}$	$\begin{gathered} 1 / 4 \text { tinst } x \\ (\mathrm{mxn}+8)+20 \end{gathered}$	ns	master mode
SDA output delay	too	SDA		1/4tinst x 4-20	$1 / 4 \mathrm{tInst} \times 4+20$	ns	
SDA output setup time after interrupt	toosu	SDA		1/4tinst $\times 4-20$	-	ns	
SCL input LOW pulse width	tıow	SCL		1/4tinst $\times 6+40$	-	ns	
SCL input HIGH pulse width	tıIGH	SCL		1/4 tinst $\times 2+40$	-	ns	
SDA input setup time	tsu	SDA		40	-	ns	
SDA hold time	тно	SDA		0	-	ns	

- For information in tinst, see "(4) Instruction Cycle".
- m is defined in the ICCR CS4 and CS3 (bit 4 to bit 3)
- n is defined in the ICCR CS2 to CSO (bit 2 to bit 0)

5. A/D Converter Electrical Characteristics

(1) For MB89567H A/D Converter
$\left(\mathrm{AVcc}=3.5 \sim 5.5 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	10	bit	1LSB = AVR/1024
Total error			$\mathrm{AVR}=\mathrm{AV}$ cc	-	-	± 5.0	LSB	
Non-linearity error				-	-	± 2.5	LSB	
Differential linearity error				-	-	± 1.9	LSB	
Zero transition voltage	Vот			$\begin{aligned} & \hline \text { AVR - } \\ & \text { 3.5 LSB } \end{aligned}$	$\begin{gathered} \hline \text { AVR + } \\ 0.5 \mathrm{LSB} \end{gathered}$	$\begin{aligned} & \hline \text { AVR + } \\ & 4.5 \mathrm{LSB} \end{aligned}$	mV	
Full-scale transition voltage	$V_{\text {fst }}$			$\begin{gathered} \hline \text { AVR - } \\ 6.5 \mathrm{LSB} \end{gathered}$	$\begin{aligned} & \hline \text { AVR - } \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \hline \text { AVR + } \\ & 1.5 \mathrm{LSB} \end{aligned}$	mV	
Interchannel disparity	-			-	-	4	LSB	1LSB = AVR/1024
A/D mode conversion time *3			-	-	60 tins**	-	$\mu \mathrm{s}$	
A/D Sampling time				-	16 tins**	-		
Analog port input current	IAIN	ANO to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Vain			AVss	-	AVR	V	
Reference voltage	-	AVR		AVss+3.5	-	AVcc	V	
Reference voltage supply current	In		A / D is Activated	-	400	-	$\mu \mathrm{A}$	
	IRH		A/D is Stopped	-	-	5	$\mu \mathrm{A}$	*2

*: 1 For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

* $: 2$ When A/D conversion is not in operation, and the CPU is in STOP mode.
*:3 Included sampling time

MB89560H Series

(2) For MB89P568 A/D Converter
$\left(\mathrm{AVcc}=3.5 \sim 5.5 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	10	bit	1LSB = AVR/1024
Total error			$A V R=A V c c$	-	-	± 3.0	LSB	
Non-linearity error				-	-	± 2.5	LSB	
Differential linearity error				-	-	± 1.9	LSB	
Zero transition voltage	Vот			$\begin{gathered} \hline \text { AVR - } \\ \text { 1.5 LSB } \end{gathered}$	$\begin{gathered} \text { AVR + } \\ \text { 0.5 LSB } \end{gathered}$	$\begin{gathered} \hline \text { AVR + } \\ 2.5 \mathrm{LSB} \end{gathered}$	mV	
Full-scale transition voltage	V ${ }_{\text {FSt }}$			$\begin{aligned} & \text { AVR - } \\ & \text { 3.5 LSB } \end{aligned}$	$\begin{aligned} & \text { AVR - } \\ & \text { 1.5 LSB } \end{aligned}$	$\begin{aligned} & \text { AVR + } \\ & \text { 1.5 LSB } \end{aligned}$	mV	
Interchannel disparity	-			-	-	4	LSB	1LSB = AVR/1024
A/D mode conversion time *3			-	-	60 tinst*1	-	$\mu \mathrm{s}$	
A/D Sampling time				-	16 tinst*1	-		
Analog port input current	Iain	ANO to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Valn			AVss	-	AVR	V	
Reference voltage	-	AVR		AVss+3.5	-	AVcc	V	
Reference voltage supply current	IR		A / D is Activated	-	400	-	$\mu \mathrm{A}$	
	IRH		A / D is Stopped	-	-	5	$\mu \mathrm{A}$	*2

*: 1 For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

* $: 2$ When A/D conversion is not in operation, and the CPU is in STOP mode.
*:3 Included sampling time

(3) Precautions

- The smaller the | AVR-AVss |, the greater the error would become relatively.
- The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. $10 \mathrm{k} \Omega$
- If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time $=6 \mu \mathrm{~s}$ at 10 MHz oscillation.)

Analog Input Circuit Model

If the analog input impedance is higher than 10 kW , it is recommended to connect an external capacitor of approx. 0.1 mF .

(4) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.

- Linearity error

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111110" $\leftrightarrow " 111111$ 1111") from actual conversion characteristics

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise

MB89560H Series

(Continued)

[^1]
INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

MB89560H Series

(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7$)$
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	Number of instructions
\#:	Number of bytes
Operation:	Operation of an instruction
TL, TH, AH:	A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following: - "-" indicates no change. - dH is the 8 upper bits of operation description data. - AL and AH must become the contents of AL and AH immediately before the instruction is executed. - 00 becomes 00.
N, Z, V, C:	An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code:	Code of an instruction. If an instruction is more than one code, it is written according to the following rule:

Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 F$.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$($ ext $) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-		47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + --	04
MOV A,dir	3	2	(A) \leftarrow (dir)	AL	-	-	+ + --	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	+ + --	06
MOV A,ext	4	3	(A) \leftarrow (ext)	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (})\end{array}\right)$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (EP) }\end{array}\right)$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-		87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(A H),($ dir +1$) \leftarrow(A L)$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$($ ext $) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-		D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ + - -	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ +--	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ + - -	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow(\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A})+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	---	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	---	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2		$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A) $) \leftarrow$ (T)	-	-	-	---	82
MOVW @A,T	4	1	$((A)) \leftarrow(T H),((A)+1) \leftarrow(\mathrm{TL})$	-	-	-	---	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	---	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH		70
MOVW PS,A	2		$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	---	E5
SWAP	2		$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	---	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-		A8 to AF
CLRB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 0$	-	-	-	---	A0 to A7
XCH A, ${ }^{\text {P }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3		$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3		$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3		(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $A, T \leftarrow A$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+$ (dir $)+\mathrm{C}$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ (IX) + off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(A L) \leftarrow(A L)+(T L)+C$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-$ (dir) - C	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ (IX) +off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	(A) $\leftarrow(\mathrm{A})+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ (dir)	-	-	-	+ + R -	65

(Continued)

Mnemonic	~	\#	Operation	TL	TH	AH	N Z V C	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	-	-	$++\mathrm{R}-$	74
OR A,dir	3	2	$(A) \leftarrow(A L) \vee($ dir $)$	-	-	-	$++\mathrm{R}-$	75
OR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(S P) \leftarrow(S P)-1$	-	-	-	- - - -	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $P C \leftarrow P C+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	- +	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	+ -	B 8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	--	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	--	51		
NOP	1	1		-	-	-	---	00
CLRC	1	1		-	-	-	---	81
SETC	1	1		-	-	-	$---S$	91
CLRI	1		-	-	-	---	80	
SETI	1			-	-	-	----	90

MB89560H Series

INSTRUCTION MAP

น		$\begin{aligned} & \sum_{n}^{0} \\ & \sum_{0}^{0} \\ & \sum_{2}^{0} \end{aligned}$	$\begin{aligned} & \hline \underset{\text { x }}{\substack{x}} \\ & \sum_{0}^{0} \end{aligned}$						$\begin{aligned} & \quad \overline{0} \\ & \mathrm{Z}_{\mathrm{m}} \end{aligned}$		¢ ${ }_{\text {¢ }}^{\text {¢ }}$	希		N		$\begin{aligned} & \quad \bar{\omega} \\ & \stackrel{\llcorner }{\omega} \\ & \hline \end{aligned}$
ш	$\sum_{j}^{\stackrel{\boxed{B}}{0}}$															
－	${\underset{c}{3}}_{\substack{3 \\ 0}}$	$\begin{aligned} & z_{0}^{0} \\ & \text { un } \end{aligned}$	$\begin{aligned} & {\underset{U}{u}}^{\times} \\ & \underset{\sim}{u} \end{aligned}$	$\begin{aligned} & 3_{0}^{\text {u }} \\ & \text { un } \end{aligned}$					$\begin{aligned} & \text { 오 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \text { O} \\ & \text { 吕 } \end{aligned}$	$\begin{aligned} & \tilde{\Upsilon} \\ & \underset{\sim}{\text { ® }} \end{aligned}$	$\begin{aligned} & \text { 毋ٌ } \\ & \text { O } \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\text { ñ }}{\text { O}} \\ & \text { O} \end{aligned}$		$\begin{aligned} & \hat{\text { x }} \\ & \text { O} \end{aligned}$
0	${ }^{<}$	${\underset{3}{3}}_{\underline{3}}^{0}$	$\begin{aligned} & \times \\ & \underset{3}{3} \\ & \underline{Z} \end{aligned}$		$\underset{\substack{\text { O}}}{\substack{\stackrel{\rightharpoonup}{x} \\ \ll}}$	$\begin{aligned} & \sum_{0}^{\text {言 }} \\ & \sum_{\sum}^{0} \end{aligned}$				$\begin{aligned} & \bar{\sim} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { ヘ̃ } \\ & \underline{\underline{\sim}} \end{aligned}$	$$		$\begin{aligned} & \text { セٌ } \\ & \underline{\text { ® }} \\ & \underline{Z} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \underline{\Perp} \\ & \underline{Z} \end{aligned}$	$\begin{aligned} & \hat{\mathbb{\infty}} \\ & \underline{\underline{O}} \end{aligned}$
∞																
＜																
\square	$\underset{\sim}{F}$	$\begin{aligned} & \text { U } \\ & \text { 心 } \end{aligned}$			$\underset{\Delta}{0}$					$\sum_{0}^{\frac{\infty}{0}}$						
∞	$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{u} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{y}{c} \\ & 0 \end{aligned}$			$\frac{\pi}{4}$											
N			$\stackrel{\square}{0}$	${\underset{c}{0}}_{\substack{0}}^{\ll}$	$\underbrace{\frac{\text { Do }}{\text { 异 }}}_{0}$	$\stackrel{\text { 玄 }}{\substack{\text { < }}}$	$\stackrel{\times}{\text { ® }}$									
\bullet			${ }^{<}$	3^{\ll}	$\underbrace{\frac{\text { D }}{\text { D }}}$		号苃这	苍苍	$\sum_{i}^{\stackrel{\circ}{2}}$	$\sum_{<}^{\stackrel{\Gamma}{<}}$	$\sum_{i}^{\stackrel{\tilde{c}}{\gtrless}}$	$\sum_{i}^{\stackrel{\sim}{c}}$		$\sum_{i}^{\stackrel{\circ}{\sim}}$	$\sum_{i}^{\stackrel{\circ}{\gtrless}}$	$\sum_{i}^{\stackrel{\hat{c}}{\gtrless}}$
\bigcirc	$\begin{aligned} & 3^{<} \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3_{0}^{x}														
－										$\frac{\underset{\sim}{x}}{\stackrel{\rightharpoonup}{x}}$	in					
∞	$\underset{\underset{\sim}{\underset{\sim}{\mid}}}{\underset{\sim}{\mid}}$			$\begin{aligned} & 3_{0}^{《} \\ & \text { M } \\ & \text { @ } \end{aligned}$												
\sim	$\underset{\underset{\sim}{\underset{\sim}{x}}}{ }$	$\sum_{=1}^{0 \frac{0}{\bar{\circ}}}$								Ơ						
－	\sum_{∞}^{n}	\sum_{0}^{\ll}	$\sum_{0}^{1}{ }^{\star}$	\sum_{0}^{3}				\sum_{0}^{n}	\sum_{0}^{n}		\sum_{0}^{n}	$\sum_{0}^{\substack{\infty \\ \multirow{2}{\infty}{\multirow{2}{c}{}}\\ \multirow {2} { c }}}$		\sum_{0}^{n}		\sum_{0}^{0}
0	$\frac{0}{2}$	$\stackrel{\rightharpoonup}{3}_{2}^{2}$	$\begin{aligned} & 0^{«} \\ & \mathrm{O}_{\underset{\sim}{x}} \end{aligned}$											®		
1	0	－	N	の	－	๑	\bullet	N	∞	0	＜	■	0	\square	ш	แ

MB89560H Series

MASK OPTION

	Model	$\begin{aligned} & \text { MB89567H } \\ & \text { MB89567HC } \end{aligned}$	MB89P568	MB89PV560
NO.	Specification method	Specify when ordering mask.	Setting unavailable.	Setting unavailable.
1	Main clock oscillation stabilization delay time initial value* selection ($\mathrm{FCH}=10$ MHz) - 01: $2^{12} /$ FCH (Approx. 0.41 ms) - 10: 216/FCH (Approx. 6.55 ms) - 11: $2^{18} /$ FCH (Approx. 26.2 ms)	Selectable	$2^{18} /$ FCH (Approx. 26.2 ms)	218/Fch (approx. 26.2 ms)
2	LCD driving power supply - On-chip voltage booster - Internal voltage divider (external divider resistors can be used)	Internal voltage booster	Selectable by version number	-101 Internal voltage divider -102 On-chip voltage booster

MB89560H Series

ORDERING INFORMATION

Part number	Package	Remarks
MB89567HPFV MB89567HCPFV MB89P568PFV-101	80-pin Plastic LQFP (FPT-80P-M05)	Without Booster Resistor divider
MB89567HPFV MB89567HCPFV MB89P568PFV-102		With Booster
MB89567HPF MB89567HCPF MB89P568PF-101	80-pin Plastic QFP (FPT-80P-M06)	Without Booster Resistor divider
MB89567HPF MB89567HCPF MB89P568PF-102		With Booster
MB89567HPFM MB89567HCPFM MB89P568PFM-101	80-pin Plastic LQFP (FPT-80P-M11)	Without Booster Resistor divider
MB89567HPFM MB89567HCPFM MB89P568PFM-102		With Booster
MB89PV560CF-101	80-pin Ceramic MQFP (MQP-80C-P01)	Without Booster Resistor divider
MB89PV560CF-102		With Booster

PACKAGE DIMENSIONS

80-pin Plastic QFP
(FPT-80P-M06)

(c) 1995 FUJITSU LIMITED F80016S-1C-3

Deminsion in mm (inches)

MEMO

MB89560H Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
1250 East Arques Avenue
Sunnyvale, CA 94088-3470, USA
Tel: (408) 737-5600
Fax: (408) 737-5999

Mon. - Fri.: 7 am - 5 pm (PST)
Toll Free: (800) 866-8608
http://www.fma.fujitsu.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

F9806

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

[^0]: * :Varies with conditions such as the operating frequency. (See "■ Electrical Characteristics.")
 ${ }^{*} 1$: When booster is used, the bias is reduced by $1 / 3$. it can be selected by mask option.
 *2 : When the A/D converter is used, operating voltage must be 3.5 V to 5.5 V .
 *3 : Use MBM27C512-20 as the external ROM (operating voltage: 4.5 V to 5.5 V)
 ${ }^{*} 4: I^{2} \mathrm{C}$ is complied to Intel Corp. System Management Bus Rev. 1.0 specification and to the Philips $I^{2} \mathrm{C}$ specification.
 *5 : 1 tinst = one instruction cycle (execution time) which can be selected as $1 / 4,1 / 8,1 / 16$, or $1 / 64$ of main clock if main clock mode is selected, or $1 / 2$ of the subclock if subclock mode is selected

[^1]: Digital output N linearity error $=\frac{V_{N T}-\left\{1 \mathrm{LSB} \times N+\mathrm{V}_{\mathrm{OT}}\right\}}{1 \mathrm{LSB}} \quad$ Digital output N differential linearity error $=\frac{\mathrm{V}_{(N+1) \mathrm{T}}-\mathrm{V}_{N T}}{1 \mathrm{LSB}}-1$

