## Pin Configuration

| SOT-25/TSOT-25 Top View |  | SOT-26/TSOT-26 Top View |  |
| :---: | :---: | :---: | :---: |
| 5 | AME5142AEEV | $6 \quad 54$ | AME5142AEEY |
| $\square \square$ | 1. SW | $\square \square \square$ | 1. SW |
| AME5142 | 2. GND | AME5142 | 2. GND |
|  | 3. FB |  | 3. FB |
|  | 4. EN |  | 4. EN |
| $\square \square \square$ | 5. $\mathbb{N}$ | - - | 5. OVP |
| 12 |  | 123 | 6. $\mathbb{N}$ |
|  | * Die Attach: |  | * Die Attach: |
|  | Conductive Epoxy |  | Conductive Epoxy |

## Pin Description

AME5142AEEV

| Pin Number | Pin Name | Pin Description |
| :---: | :---: | :--- |
| 1 | SW | Power Switch input. <br> This is the drain of the internal NMOS power switch. Minimize the metal <br> trace area connected to this pin to minimize EMI. |
| 2 | GND | Ground. <br> Tie directly to ground plane. |
| 3 | EN | Output voltage feedback input. <br> Connect the ground of the feedback network to an AGND (Analog Ground) <br> plane which should be tied directly to the GND pin. |
| 4 | Enable control input, active high. <br> The enable pin is an active high control. Tie this pin above 1.5V to enable <br> the device. Tie this pin below 0.4V to turn off the device. |  |
| 5 | $\mathbb{I N}$ | Analog and Power input. <br> Input Supply Pin. Bypass this pin with a capacitor as close to the device <br> as possible. |

## Pin Description

AME5142AEEY

| Pin Number | Pin Name | Pin Description |
| :---: | :---: | :--- |
| 1 | SW | Power Switch input. <br> This is the drain of the internal NMOS power switch. Minimize the metal <br> trace area connected to this pin to minimize EMI. |
| 2 | GND | Ground. <br> Tie directly to ground plane. |
| 3 | EN | Output voltage feedback input. <br> Connect the ground of the feedback network to an AGND(Analog Ground) <br> plane which should be tied directly to the GND pin. |
| 4 | OVP | Enable control input, active high. <br> The enable pin is an active high control. Tie this pin above 1.5V to enable <br> the device. Tie this pin below 0.4V to turn off the device. |
| 5 | Over Voltage Protection. |  |
| 6 | $\mathbb{N}$ | Analog and Power input. <br> Input Supply Pin. Bypass this pin with a capacitor as close to the device <br> as possible. |

## White LED Boost Converter <br> In Tiny Package

Ordering Information


| Pin Configuration | Operating Ambient Temperature Range | Package Type | Number of Pins | Output Voltage | Special Feature |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A 1. SW <br> (sot-25) 2. GND <br> (Tsot-25) 3. FB <br>  4. EN <br>  5. IN <br> A 1. SW <br> (sot-26) 2. GND <br> (Tsot-26) 3. FB <br>  4. EN <br>  5. OVP <br>  6. IN | E: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | E: SOT-2X | $\begin{array}{l:l} \mathrm{V}: & 5 \\ \mathrm{Y}: & 6 \end{array}$ | ADJ: Adjustable | Y: Lead free \& Low profile <br> Z: Lead free |

## ■ Ordering Information

| Part Number | Marking* | Output Voltage | Package | Operating Ambient <br> Temperature Range |
| :---: | :---: | :---: | :---: | :---: |
| AME5142AEEYADJZ | BJGww | ADJ | SOT-26 | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| AME5142AEEYADJY | BJGww | ADJ | TSOT-26 | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| AME5142AEEVADJZ | BJHww | ADJ | SOT-25 | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| AME5142AEEVADJY | BJHww | ADJ | TSOT-25 | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

Note: ww represents the date code and pls refer to Date Code Rule page on Package Dimension.

* A line on top of the first letter represents lead free plating such as BJGww.

Please consult AME sales office or authorized Rep./Distributor for the availability of package type.

## Absolute Maximum Ratings

| Parameter | Symbol | Maximum | Unit |
| :--- | :---: | :---: | :---: |
| Input Supply Voltage | $\mathrm{V}_{\mathrm{IN}}$ | 6 | V |
| EN, FB Voltages | $\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{FB}}$ | $\mathrm{V}_{\mathrm{IN}}$ | V |
| SW, OVP Voltage | $\mathrm{V}_{\mathrm{SW},}, \mathrm{V}_{\mathrm{OVP}}$ | 30 | V |
| ESD Classification | $\mathrm{B}^{\star}$ |  |  |

Caution: Stress above the listed in absolute maximum ratings may cause permanent damage to the device.

* HBM B: 2000V ~ 3999V

Recommended Operating Conditions

| Parameter | Symbol | Rating | Unit |
| :--- | :---: | :---: | :---: |
| Ambient Temperature Range | $\mathrm{T}_{\mathrm{A}}$ | -40 to 85 | ${ }^{\circ} \mathrm{C}$ |
| Junction Temperature Range | $\mathrm{T}_{\mathrm{J}}$ | -40 to 125 |  |
| Storage Temperature Range | $\mathrm{T}_{\text {STG }}$ | -65 to 150 |  |

## ■ Thermal Information

| Parameter | Package | Die Attach | Symbol | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance* (Junction to Case) | SOT-25 <br> TSOT-25 <br> SOT-26 <br> TSOT-26 | Conductive Epoxy | $\theta_{\text {Jc }}$ | 81 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance (Junction to Ambient) |  |  | $\theta_{\text {JA }}$ | 260 |  |
| Internal Power Dissipation |  |  | $\mathrm{P}_{\mathrm{D}}$ | 400 | mW |
| Solder Iron (10Sec)** |  |  |  | 350 | ${ }^{\circ} \mathrm{C}$ |

[^0]AME, Inc.

## White LED Boost Converter In Tiny Package

## Electrical Specifications

$\mathrm{V}_{\mathbb{I N}}=4.2 \mathrm{~V}, E N=\mathrm{V}_{\mathbb{N}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise noted.

| Parameter | Symbol | Test Condition | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage | $\mathrm{V}_{\text {IN }}$ |  | 2.7 |  | 5.5 | V |
| Quiescent Current | $\mathrm{I}_{0}$ | Switching, $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ |  | 0.85 | 1 | mA |
|  |  | Not Switching, $\mathrm{V}_{\mathrm{FB}}=0.2 \mathrm{~V}$ |  | 180 | 250 | $\mu \mathrm{A}$ |
| Feedback Trip Point | $\mathrm{V}_{\text {FB }}$ |  | 0.137 | 0.15 | 0.163 | $\checkmark$ |
| FB Pin Bias Current | $\mathrm{I}_{\text {FB }}$ | $\mathrm{V}_{\mathrm{FB}}=0.2 \mathrm{~V}$ |  | 0.1 | 1 | $\mu \mathrm{A}$ |
| Switch Current Limit | $\mathrm{I}_{\mathrm{CL}}$ |  | 650 | 850 | 1000 | mA |
| Switch On-Resistance | $\mathrm{R}_{\text {DSON }}$ | $\mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=0.2 \mathrm{~V}$ |  | 0.7 | 1.4 | $\Omega$ |
| SW Leakage Current | $\mathrm{I}_{\text {sw }}$ | $\mathrm{V}_{\text {Sw }}=20 \mathrm{~V}$ |  | 1 | 10 | $\mu \mathrm{A}$ |
| Swich frequency | $\mathrm{f}_{\text {sw }}$ | $\mathrm{V}_{\mathrm{FB}}=0.1 \mathrm{~V}$ | 0.9 | 1.2 | 1.5 | MHz |
| Maximum Duty Cycle | Dmax | $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ | 88 | 92 |  | \% |
| Shutdown Supply Current | $\mathrm{I}_{\text {SD }}$ | $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ |  | 0.01 | 1 | $\mu \mathrm{A}$ |
| Over Temperature Protection | OTP | Shutdown, temperature increasing |  | 160 |  | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{T}_{\text {RS }}$ | Restore, temperature decreasing |  | 140 |  |  |
| Over Voltage Protection | OVP | Rising edge | 24 | 26 | 28 | V |
| Input Undervoltage Lockout | UVP | $\mathrm{V}_{\text {IN }}$ rising or falling | 2.35 | 2.5 | 2.65 | V |
| EN Input Low | $V_{\text {EL }}$ |  |  |  | 0.4 | V |
| EN Input High | $\mathrm{V}_{\text {EH }}$ |  | 1.5 |  |  |  |
| EN Input Current | $\mathrm{I}_{\text {EN }}$ | $\mathrm{EN}=\mathrm{GND}$ or $\mathrm{V}_{\text {IN }}$ |  | 0.1 | 2 | $\mu \mathrm{A}$ |

## AME5142

## White LED Boost Converter

 In Tiny Package
## Detailed Description

The AME5142 is a constant frequency step-up converter with an internal switch. The operations of AME5142 can be understood from block diagram clearly figure.2. The oscillator triggers the SET input of SR latch to turn on the power switch MS at the start of each cycle. A current sense voltage sum with a stabilizing ramp is connected to the positive terminal of the PWM comparator. When this voltage exceeds the output voltage of the error amplifier, the SR latch is reset to turn off the power switch till next cycle starts. The output voltage of the error amplifier is amplified from the difference between the reference voltage 0.15 V and the feedback voltage. In this manner, if the error amplifiers voltage increases, more current is delivered to the output; if it decreases, less current is delivered. A 26 V Zener diode connects from OVP pin to FB pin internally to provide an optional protection function which prevents SW pin from over-voltage damage. Especially when the case of the feedback loop broken due to component wear-out or improper connection occurs. The behavior of OVP is to clamp the output voltage to 26 V typically. This function is suitable for the applications while driving white LEDs less than 6 in series.

## Current Limit Protection

The AME5142 has current limiting protection to prevent excessive stress on itself and external components during overload conditions. The internal current limit comparator will disable the NMOS power device at a typical switch peak current limit of 850 mA .

## Output Over-Voltage Protection

The AME5142 contains dedicated circuitry for monitoring the output voltage. In the event that the primary LED network is disconnected the output will increase and be limited to 26 V (TYP), which will turn the NMOS off when the output voltage is at 26 V (max.) until the output voltage reach 26 V (TYP.) or lower. The 26 V limit allows the use of $26 \mathrm{~V} 1 \mu \mathrm{~F}$ ceramic output capacitors creating an overall small solution for white LED applications.

## Under Voltage Protection

The AME5142 has an UVP comparator to turn the NMOS power device off in case the input voltage or battery voltage is too low preventing an on state of the power device conducting large amounts of current.

## Application Hints

## Inductor Selection

The recommended value of inductor for AME5142 applications is $10 \mu \mathrm{H}$. Small size and better efficiency are the major concerns for portable device, such as AME5142 used for dual panel mobile phone. The inductor should have low DCR for better efficiency. To avoid inductor saturation, current rating should be at least 1 A . The input range is 2.7 V to 5.5 V .

## Capacitor Selection

$4.7 \mu \mathrm{~F}$ input capacitor can reduce input ripple. For better voltage stability, to increase the input capacitor value or using LC filter is feasible, especially in the Li-ion battery application. $1 \mu \mathrm{~F}$ output capacitor is sufficient to reduce output voltage ripple. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

## Diode Selection

Schottky diode is a good choice for AME5142 because of its lower forward voltage drop and faster reverse recovery. Using schottky diode can get better efficiency. The high speed rectification is also a good characteristic of schottky diode for high switching frequency. Current rating of the diode must meet the root mean square of the peak current and output average current multiplication.

## Duty Cycle

The maximum duty cycle of the switching regulator determines the maximum boost ratio of output-toinput voltage that the converter can attain in mode of operation. The duty cycle for a given boost application is defined as: This applies for continuous mode operation.

$$
D=\frac{v_{\text {OUT }}+V_{\text {DIODE }}-V_{I N}}{v_{\text {OUT }}+V_{\text {DIODE }}-V_{S W}}
$$

# White LED Boost Converter In Tiny Package 

## - Application Hints

## Calculating Load Current

The load current is related to the average inductor current by the relation:

$$
\mathrm{I}_{\mathrm{LOAD}}=\mathrm{I}_{\text {IND }}(\mathrm{AVG}) \times(1-\mathrm{D})
$$

Where " $D$ " is the duty cycle of the application. The switch current can be found by:

$$
I_{\mathrm{SW}}=\mathrm{I}_{\text {IND }}(\mathrm{AVG})+1 / 2\left(\mathrm{I}_{\text {RIPPLE }}\right)
$$

Inductor ripple current is dependent on inductance, duty cycle, input voltage and frequency:

$$
I_{\text {RIPPLE }}=D \times\left(V_{\mathbb{N}}-V_{\text {SW }}\right) /(f \times L)
$$

Combining all terms, we can develop an expression which allows the maximum available load current to be calculated:

$$
I_{L O A D}=(1-D) \times\left(I_{S W}(\max )-\frac{D\left(V_{I N}-V_{S W}\right)}{2 f L}\right)
$$

## Thermal Considerations

At higher duty cycles, the increased ON time of the FET means the maximum output current will be determined by power dissipation within the AME5142 switch. The switch power dissipation from ON-state conduction is calculated by:

$$
\mathrm{P}_{(\mathrm{SW})}=\mathrm{D} \times \mathrm{I}_{\text {IND(AVE) } 2} \times \mathrm{R}_{\mathrm{DS}}(\mathrm{ON})
$$

There will be some switching losses as well, so some derating needs to be applied when calculating IC power dissipation.

## Shutdown Pin Operation

The device is turned off by pulling the shutdown pin low. If this function is not going to be used, the pin should be tied directly to $\mathrm{V}_{\mathbb{N}}$. If the SHDN function will be needed, a pull-up resistor must be used to $\mathrm{V}_{\mathbb{N}}$ (approximately 50 k 100k recommended). The EN pin must not be left unterminated.

## Dimming Control

A. Using a PWM Signal to EN Pin

For controlling the LED brightness, the AME5142 can perform the dimming control by applying a PWM signal to EN pin.

The average LED current is proportional to the PWM signal duty cycle. The magnitude of the PWM signal should be higher than the maximum enable voltage of EN pin, in order to let the dimming control perform correctly.


Figure 5. PWM Dimming Control Using the EN Pin

# White LED Boost Converter In Tiny Package 

## Application Hints

## Dimming Control

B. Using a DC Voltage

Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit is shown in Figure 6. According to the Superposition Theorem, as the DC voltage increases, the voltage contributed to $\mathrm{V}_{\mathrm{FB}}$ increases and the voltage drop on R2 decreases, i.e. the LED current decreases. For example, if the $\mathrm{V}_{\mathrm{DC}}$ range is from 0 V to 3 V , the selection of resistors in Figure 6 sets dimming control of LED current from 20 mA to 0 mA .


Figure6. Dimming Control Using a DC Voltage

## C. Using a Filtered PWM Signal

The filtered PWM signal can be considered as an adjustable DC voltage. It can be used to replace the variable DC voltage source in dimming control. The circuit is shown in Figure 7.


Figure 7. Dimming Control Using a Filtered PWM Signal

Max Duty Cycle vs. Temperature


Switch RDSON


Efficiency vs. Load Current Dirving 4 LEDs


Oscillator Frequency vs. Temperature


Efficiency vs. Load Current
Dirving 3 LEDs


Efficiency vs. Load Current Dirving 6 LEDs


## White LED Boost Converter In Tiny Package

## Current Limit vs. $\mathrm{V}_{\text {IN }}$



Dimming Control for Driving 6LEDs

$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} ; 6$ LEDs
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$
2) $\mathrm{EN}=1 \mathrm{~V} / \mathrm{div}, \mathrm{DC} f=200 \mathrm{~Hz}$
3) $V_{\text {out }}, 10 \mathrm{~V} / \mathrm{div}, D C$

1) $V_{s w}=10 \mathrm{~V} / \mathrm{div}, D C$
$\mathrm{V}_{\mathrm{FB}}$ vs. Temperature


Dimming Control for Driving 6LEDs

$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} ; 6$ LEDs
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$
2) $E N=1 V / \operatorname{div}, D C f=200 \mathrm{~Hz}$
3) $V_{\text {out }}, 10 \mathrm{~V} / \mathrm{div}, D C$

1) $V_{s w}=10 \mathrm{~V} / \mathrm{div}, D C$

## White LED Boost Converter In Tiny Package

Dimming Control for Driving 6LEDs

$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} ; 6$ LEDs
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$
2) $\mathrm{EN}=1 \mathrm{~V} / \mathrm{div}, \mathrm{DC} f=200 \mathrm{KHz}$
3) $\mathrm{V}_{\text {OUt }}, 10 \mathrm{~V} / \mathrm{div}, \mathrm{DC}$

1) $V_{s w}=10 \mathrm{~V} / \mathrm{div}, D C$

Start-Up / Shutdown

$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V} ; 1$ LEDs
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$

1) $\mathrm{EN}=2 \mathrm{~V} / \mathrm{div}$, DC
2) Inductor Current, $100 \mathrm{~mA} / \mathrm{div}, \mathrm{DC}$
3) $\mathrm{V}_{\text {out }}, 2 \mathrm{~V} / \operatorname{div}, \mathrm{DC}$

Dimming Control for Driving 6LEDs

$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} ; 6$ LEDs
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$
2) $\mathrm{EN}=1 \mathrm{~V} / \mathrm{div}, \mathrm{DC} f=200 \mathrm{KHz}$
3) $\mathrm{V}_{\text {OUt }}, 10 \mathrm{~V} / \mathrm{div}, \mathrm{DC}$

1) $V_{s w}=10 \mathrm{~V} / \mathrm{div}, D C$

Start-Up / Shutdown

$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} ; 6$ LEDs
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$

1) $E N=2 V / \operatorname{div}, D C$
2) Inductor Current, $500 \mathrm{~mA} / \mathrm{div}, \mathrm{DC}$
3) $\mathrm{V}_{\text {OUt }}, 10 \mathrm{~V} / \mathrm{div}, \mathrm{DC}$

# White LED Boost Converter In Tiny Package 

Start-Up / Shutdown

$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} ; 6$ LEDs
$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}$

1) $E N=2 V / d i v, D C$
2) Inductor Current, $500 \mathrm{~mA} /$ div, DC
3) $V_{\text {OUT }}, 10 \mathrm{~V} / \mathrm{div}, \mathrm{DC}$

Typical Switching Waveform

$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$; 6 LEDs
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$

1) $V_{\text {sw }}=10 \mathrm{~V} / \mathrm{div}, D C$
2) $\mathrm{V}_{\text {OUT }}, 20 \mathrm{mV} / \mathrm{div}, \mathrm{AC}$
3) Input Current, $100 \mathrm{~mA} /$ div, DC Inductor $=10 \mu \mathrm{H}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}$

Typical Switching Waveform

$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V} ; 6$ LEDs
$l_{\text {OUT }}=20 \mathrm{~mA}$

1) $V_{s w}=10 \mathrm{~V} / \mathrm{div}, D C$
2) $\mathrm{V}_{\text {out }}, 20 \mathrm{mV} / \mathrm{div}, \mathrm{AC}$
3) Input Current, $100 \mathrm{~mA} /$ div, DC Inductor $=10 \mu \mathrm{H}, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$

## Date Code Rule

| Marking |  |  | Date Code |  | Year |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | A | A | W | W | xxx0 |
| A | A | A | W | W | xxx1 |
| A | A | A | W | W | xxx2 |
| A | A | A | W | W | xxx3 |
| A | A | A | W | W | xxx4 |
| A | A | A | W | W | xxx5 |
| A | A | A | W | W | xxx6 |
| A | A | A | W | W | xxx7 |
| A | A | A | W | W | xxx8 |
| A | A | A | W | W | xxx9 |

■ Tape and Reel Dimension

SOT-25


Carrier Tape, Number of Components Per Reel and Reel Size

| Package | Carrier Width (W) | Pitch (P) | Part Per Full Reel | Reel Size |
| :---: | :---: | :---: | :---: | :---: |
| SOT- 25 | $8.0 \pm 0.1 \mathrm{~mm}$ | $4.0 \pm 0.1 \mathrm{~mm}$ | 3000 pcs | $180 \pm 1 \mathrm{~mm}$ |

# White LED Boost Converter <br> In Tiny Package 

## $■$ Tape and Reel Dimension

TSOT-25


Carrier Tape, Number of Components Per Reel and Reel Size

| Package | Carrier Width (W) | Pitch (P) | Part Per Full Reel | Reel Size |
| :---: | :---: | :---: | :---: | :---: |
| TSOT-25 | $8.0 \pm 0.1 \mathrm{~mm}$ | $4.0 \pm 0.1 \mathrm{~mm}$ | 3000 pcs | $180 \pm 1 \mathrm{~mm}$ |

SOT-26


Carrier Tape, Number of Components Per Reel and Reel Size

| Package | Carrier Width (W) | Pitch (P) | Part Per Full Reel | Reel Size |
| :---: | :---: | :---: | :---: | :---: |
| SOT- 26 | $8.0 \pm 0.1 \mathrm{~mm}$ | $4.0 \pm 0.1 \mathrm{~mm}$ | 3000 pcs | $180 \pm 1 \mathrm{~mm}$ |

## White LED Boost Converter <br> In Tiny Package

- Tape and Reel Dimension

TSOT-26


Carrier Tape, Number of Components Per Reel and Reel Size

| Package | Carrier Width (W) | Pitch (P) | Part Per Full Reel | Reel Size |
| :---: | :---: | :---: | :---: | :---: |
| TSOT- 26 | $8.0 \pm 0.1 \mathrm{~mm}$ | $4.0 \pm 0.1 \mathrm{~mm}$ | 3000 pcs | $180 \pm 1 \mathrm{~mm}$ |

# White LED Boost Converter <br> In Tiny Package 

## ■ Package Dimension

SOT-25


Front View


TSOT-25


Front View


Side View

$-\|-\theta 1$

| SYMBOLS | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 1.20REF |  | 0.0472REF |  |
| $\mathrm{A}_{1}$ | 0.00 | 0.15 | 0.0000 | 0.0059 |
| b | 0.30 | 0.55 | 0.0118 | 0.0217 |
| D | 2.70 | 3.10 | 0.1063 | 0.1220 |
| E | 1.40 | 1.80 | 0.0551 | 0.0709 |
| e | 1.90 BSC |  | 0.07480 BSC |  |
| H | 2.60 | 3.00 | 0.10236 | 0.11811 |
| L | 0.37BSC |  | $0.0146 B S C$ |  |
| $\theta 1$ | $0^{\circ}$ | $10^{\circ}$ | $0^{\circ}$ | $10^{\circ}$ |
| $\mathrm{S}_{1}$ | 0.95 BSC |  | 0.0374BSC |  |

Side View


| SYMBOLS | MILLIMETERS |  | INCHES |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |  |  |
| $\mathbf{A + A}_{\mathbf{1}}$ | 0.90 | 1.25 | 0.0354 | 0.0492 |  |  |
| $\mathbf{b}$ | 0.30 | 0.50 | 0.0118 | 0.0197 |  |  |
| $\mathbf{c}$ | 0.09 | 0.25 | 0.0035 | 0.0098 |  |  |
| $\mathbf{D}$ | 2.70 | 3.10 | 0.1063 | 0.1220 |  |  |
| E | 1.40 | 1.80 | 0.0551 | 0.0709 |  |  |
| $\mathbf{e}$ | 1.90 BSC |  | 0.07480 |  |  |  |
| BSC |  |  |  |  |  |  |
| $\mathbf{H}$ | 2.40 | 3.00 | 0.09449 |  |  |  |
| $\mathbf{L}$ | 0.35 BSC |  | 0.0138 BSC |  |  |  |
| $\theta \mathbf{1}$ | $0^{\circ}$ |  | $10^{\circ}$ | $0^{\circ}$ |  | $10^{\circ}$ |
| $\mathbf{S}_{\mathbf{1}}$ | 0.95 BSC |  | 0.0374 BSC |  |  |  |

## White LED Boost Converter In Tiny Package

## Package Dimension

SOT-26


Side View


TSOT-26


## Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president

> of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.
© AME, Inc. , July 2007
Document: 1229-DS5142-A. 01

## Corporate Headquarter <br> AME, Inc.

2F, 302 Rui-Guang Road, Nei-Hu District
Taipei 114, Taiwan.
Tel: 8862 2627-8687
Fax: 8862 2659-2989

## U.S.A. (Subsidiary) <br> Analog Microelectronics, Inc.

3100 De La Cruz Blvd., Suite 201
Santa Clara, CA. 95054-2438
Tel : (408) 988-2388
Fax: (408) 988-2489


[^0]:    * Measure $\theta_{\mathrm{JC}}$ on center of molding compound if IC has no tab.
    ** MIL-STD-202G 210F

