ASSP for Power Supply Applications

Evaluation Board

MB39A102

■ DESCRIPTION

The MB39A102 evaluation board is a surface mount circuit board with four channels of up conversion, down conversion and up/down conversion circuits. The internal structure consists of one channel of step-down type, two channels of transformer type, and one channel of Sepic type. A total of seven lines of output terminals are provided, supporting voltage settings from -7 V to +15 V and supplying a current Max 500 mA (Sepic type) at a power-supply voltage between +2.5 V and +6 V . The output circuit (ch1) can be changed to the Zata type by optional replacement of components. The board incorporates the protective functions that upon detection of a short circuit or activation of the under voltage lockout protection circuit, the short-circuit protection feature shuts off transistors to stop the output. Also, the short-circuit detection comparator can detect a short circuit through an external input (initial number P12). In addition, each channel can be controlled to be turned on and off and can be set for a soft-start.

EVALUATION BOARD SPECIFICATIONS

	Terminal	Min	Typ	Max	Unit
Input voltage	VIN	2.5	3.6	6	V
Oscillation frequency	-	400	500	600	kHz
	Vo-1	2.2	2.5	2.8	
	Vo-2-1	13	15	17	V
	Vo-2-2	4.5	5	5.5	
	Vo-2-3	-8.3	-7.5	17	
	Vo-3-1	13	15	5.5	
	Vo-3-2	4.5	5	3.7	
	Vo-4	2.9	3.3		

(Continued)

MB39A102

(Continued)

	Terminal	Min	Typ	Max	Unit
Output current	Vo-1	-	-	250	mA
	Vo-2-1	-	-	10	
	Vo-2-2	-	-	50	
	Vo-2-3	-	-	-5	
	Vo-3-1	-	-	10	
	Vo-3-2	-	-	50	
	Vo-4	-	-	500	
Short-circuit detection time	-	4.6	7	12.5	ms
Soft-start time	-	7.6	10.3	15.8	ms

TERMINAL DESCRIPTION

Symbol	Function
VIN	Power-supply terminal VIN $=2.5 \mathrm{~V}$ to 6.0 V (Typ: 3.6 V)
VoX	DC/DC converter output terminal
CTL	Power-supply control terminal Vcrt $=0 \mathrm{~V}$ to 0.8 V : Standby mode VCTL 2.0 V to VIN : Operation mode
GNDX	DC/DC converter GND terminal
ICGND	MB39A102 GND terminal

SWITCH DESCRIPTION

SW	NAME	FUNCTION	ON	OFF
1	CS1	CH1 control	Output ON	Output OFF
2	CS2	CH2 control	Output ON	Output OFF
3	CS3	CH3 control	Output ON	Output OFF
4	CS4	CH4 control	Output ON	Output OFF
5	CTL	Power supply control	Operation mode	Standby mode

MB39A102

SETUP AND CHECKUP

(1) Setup

- Connect the power-supply terminal side to VIN and GND. Connect the Vo side to the required loading device or measuring instrument.
- Connect a startup power supply from 2.0 V to VIN to the CTL terminal. (This can be done by connection from VIN.)
- Set SW5 (CTL) to OFF (Standby mode) and SW1 through SW4 (CS1 through CS4) to OFF (output off).

(2) Checkup

- Turn on VIN (power supply), set SW5 to ON (Operation mode) and SW1 through SW4 to ON (output on). The IC works normally with the following outputs:

Vo1 = 2.5 V (Typ), Vo2-1 = 15 V (Typ), Vo2-2 = 5 V (Typ), Vo2-3 =-7.5 V (Typ), Vo3-1 = 15 V (Typ), Vo3-2 = 5 V (Typ), Vo4 $=3.3 \mathrm{~V}$ (Typ)

MB39A102

■ COMPONENT LAYOUT

- On-board Component Layout

Note : Only C1 and C2 parts are set on the rear surface.

MB39A102

(Continued)

Top side

Inside GND (Layer3)

Inside VIN \& GND (Layer2)

Bottom Side

MB39A102

CONNECTION DIAGRAM

Note : Fixed value of not mounted parts is described by XXX.

PARTS LIST

No	$\begin{gathered} \text { Sym } \\ \text { bol } \end{gathered}$	Part name	Model name	Specification						Package	Manufacturer	Note
				Rating 1	Rating 2	Rating 3	Value	Deviation	Features			
1	M1	IC	$\begin{aligned} & \hline \text { MB39A102 } \\ & \text { PFT } \end{aligned}$	-	-	-	-	-	-	FPT- 30P-M04	FUJITSU	
2	Q1	Pch FET	MCH3309	$\mathrm{PD}=0.9 \mathrm{~W}$	VGSS $=10 \mathrm{~V}$	$\mathrm{ID}=1.5 \mathrm{~A}$	-	-	-	-	SANYO	
3	Q2	Pch FET	MCH3309	$\mathrm{PD}=0.9 \mathrm{~W}$	VGSS $=10 \mathrm{~V}$	$\mathrm{ID}=1.5 \mathrm{~A}$	-	-	-	-	SANYO	
4	Q4	Pch FET	MCH3309	$\mathrm{PD}=0.9 \mathrm{~W}$	VGSS $=10 \mathrm{~V}$	$\mathrm{ID}=1.5 \mathrm{~A}$	-	-	-	-	SANYO	
5	Q5	NPN	CPH3206	$\mathrm{PC}=0.9 \mathrm{~W}$	$\mathrm{VCEO}=15 \mathrm{~V}$	IC $=3.0 \mathrm{~A}$	-	-	-	SC-62	SANYO	
6	D1	SBD	SBS004	$\operatorname{IF}(\mathrm{AV})=1.0 \mathrm{~A}$	VRRM $=15 \mathrm{~V}$	-	-	-	-	SOT-23	SANYO	
7	D2	SBD	$\begin{aligned} & \text { SB05- } \\ & \text { 05CP } \end{aligned}$	$\operatorname{IF}(\mathrm{AV})=0.5 \mathrm{~A}$	VRRM $=50 \mathrm{~V}$	-	-	-	-	SOT-23	SANYO	
8	D3	SBD	$\begin{aligned} & \text { SB05- } \\ & \text { 05CP } \end{aligned}$	$\operatorname{IF}(\mathrm{AV})=0.5 \mathrm{~A}$	VRRM $=50 \mathrm{~V}$	-	-	-	-	SOT-23	SANYO	
9	D4	SBD	$\begin{aligned} & \text { SB05- } \\ & \text { 05CP } \end{aligned}$	$\mathrm{IF}(\mathrm{AV})=0.5 \mathrm{~A}$	VRRM $=50 \mathrm{~V}$	-	-	-	-	SOT-23	SANYO	
10	D5	SBD	$\begin{aligned} & \text { SB05- } \\ & \text { 05CP } \end{aligned}$	$\mathrm{IF}(\mathrm{AV})=0.5 \mathrm{~A}$	VRRM $=50 \mathrm{~V}$	-	-	-	-	SOT-23	SANYO	
11	D6	SBD	$\begin{aligned} & \text { SB05- } \\ & \text { 05CP } \end{aligned}$	$\operatorname{IF}(\mathrm{AV})=0.5 \mathrm{~A}$	VRRM $=50 \mathrm{~V}$	-	-	-	-	SOT-23	SANYO	
12	D7	SBD	SBS004	$\operatorname{IF}(\mathrm{AV})=1.0 \mathrm{~A}$	VRRM $=15 \mathrm{~V}$	-	-	-	-	SOT-23	SANYO	
13	L1	Coil	-	-	-	-	-	-	-	-	-	Not mounted
14	L2	Coil	RLF5018T220MR63	IDC1 $=0.63 \mathrm{~A}$	IDC2 $=0.86 \mathrm{~A}$	-	22μ	$\pm 20 \%$	$\mathrm{RDC}=0.13 \Omega$	-	TDK	
15	L3	Coil	RLF5018T100MR94	IDC1 $=0.94 \mathrm{~A}$	IDC2 $=1.3 \mathrm{~A}$	-	10μ	$\pm 20 \%$	RDC $=0.067 \Omega$	-	TDK	
16	L4	Coil	RLF5018T150MR76	IDC1 $=0.76 \mathrm{~A}$	IDC2 $=1.0 \mathrm{~A}$	-	15μ	$\pm 20 \%$	RDC $=0.097 \Omega$	-	TDK	
17	T1	Transformer	$\begin{aligned} & \text { CLQ52 } \\ & \text { 5388-T095 } \end{aligned}$	-	-	-	-	-	-	-	SUMIDA	
18	T2	Transformer	$\begin{aligned} & \text { CLQ52 } \\ & \text { 5388-T095 } \end{aligned}$	-	-	-	-	-	-	-	SUMIDA	
19	C1	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
20	C2	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
21	C3	Ceramic condenser	-	-	-	-	-	-	-	-	-	Not mounted
22	C4	Ceramic condenser	$\begin{aligned} & \text { C3216JB1 } \\ & \text { E105K } \end{aligned}$	25 V	-	-	1μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
23	C5	Jumper	-	1/4 W	-	-	0Ω	$\begin{gathered} \mathrm{Max} \\ 50 \mathrm{~m} \Omega \end{gathered}$	-	3216	-	

(Continued)

No	$\begin{aligned} & \text { Sym } \\ & \text { bol } \end{aligned}$	Part name	Model name	Specification						Package	Manufacturer	Note
				$\underset{1}{\text { Rating }}$	${ }_{2}$	$\begin{gathered} \text { Rating } \\ \hline \end{gathered}$	Value	Deviation	Features			
24	C6	Ceramic condenser	$\begin{aligned} & \text { C3216JB1 } \\ & \text { A475M } \end{aligned}$	10 V	-	-	4.7μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
25	C7	Ceramic condenser	-	-	-	-	-	-	-	-	-	Not mounted
26	C8	Ceramic condenser	$\begin{array}{\|l} \text { C3216JB1 } \\ \text { E105K } \end{array}$	25 V	-	-	1μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
27	C9	Ceramic condenser	$\begin{array}{\|l} \text { C3216JB1 } \\ \text { C225K } \end{array}$	16 V	-	-	2.2μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
28	C10	Ceramic condenser	$\begin{array}{\|l} \text { C3216JB1 } \\ \text { C225K } \end{array}$	16 V	-	-	2.2μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
29	C11	Ceramic condenser	$\begin{aligned} & \text { C3216JB1 } \\ & \text { C225K } \end{aligned}$	16 V	-	-	2.2μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
30	C12	Ceramic condenser	-	-	-	-	-	-	-	-	-	Not mounted
31	C13	Ceramic condenser	$\begin{aligned} & \text { C3216JB1 } \\ & \text { E105K } \end{aligned}$	25 V	-	-	1μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
32	C14	Ceramic condenser	$\begin{array}{\|l} \text { C3216JB1 } \\ \text { C225K } \end{array}$	16 V	-	-	2.2μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
33	C15	Ceramic condenser	$\begin{aligned} & \text { C3216JB1 } \\ & \text { C225K } \end{aligned}$	16 V	-	-	2.2μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
34	C16	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H472K } \end{aligned}$	50 V	-	-	4700 P	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
35	C17	Ceramic condenser	$\begin{array}{\|l} \text { C3216JB1 } \\ \text { E105K } \end{array}$	25 V	-	-	1.0μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
36	C18	Ceramic condenser	$\begin{aligned} & \text { C3216JB1 } \\ & \text { A475M } \end{aligned}$	10 V	-	-	4.7μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
37	C19	Ceramic condenser	$\begin{aligned} & \text { C3216JB1 } \\ & \text { A106M } \end{aligned}$	6.3 V	-	-	10μ	$\pm 10 \%$	Temperature characteristics B	3216	TDK	
38	C20	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
39	C21	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H473K } \end{aligned}$	50 V	-	-	0.047μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
40	C22	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
41	C23	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H473K } \end{aligned}$	50 V	-	-	0.047μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
42	C24	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
43	C25	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H473K } \end{aligned}$	50 V	-	-	0.047μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
44	C26	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
45	C27	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	

(Continued)

No	Sym bol	Part name	Model name	Specification						Package	Manufacturer	Note
				Rating 1	${ }_{2} \text { Rating }$	$\underset{3}{\text { Rating }}$	Value	$\begin{array}{\|c\|} \hline \text { Devia- } \\ \text { tion } \end{array}$	Features			
46	C28	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H103K } \end{aligned}$	50 V	-	-	0.01μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
47	C29	Ceramic condenser	$\begin{aligned} & \mathrm{C} 1608 \mathrm{CH} 1 \\ & \mathrm{H} 101 \mathrm{~J} \end{aligned}$	50 V	-	-	100 p	$\pm 5 \%$	Temperature characteristics B	1608	TDK	
48	C30	Ceramic condenser	$\begin{aligned} & \text { C1608JB1 } \\ & \text { H104K } \end{aligned}$	50 V	-	-	0.1μ	$\pm 10 \%$	Temperature characteristics B	1608	TDK	
49	C31	Ceramic condenser	-	-	-	-	-	-	-	-	-	Not mounted
50	R1	Jumper	-	1/16 W	-	-	0Ω	$\begin{gathered} \operatorname{Max} \\ 50 \mathrm{~m} \Omega \end{gathered}$	-	1608	-	
51	R2	Jumper	-	1/16 W	-	-	0Ω	Max $50 \mathrm{~m} \Omega$	-	1608	-	
52	R3	Jumper	-	1/4 W	-	-	0Ω	$\begin{gathered} \operatorname{Max} \\ 50 \mathrm{~m} \Omega \end{gathered}$	-	3216	-	
53	R4	Jumper	-	1/16 W	-	-	0Ω	$\left\|\begin{array}{c} \operatorname{Max} \\ 50 \mathrm{~m} \Omega \end{array}\right\|$	-	1608	-	
54	R5	Jumper	-	1/4 W	-	-	0Ω	Max $50 \mathrm{~m} \Omega$	-	3216	-	
55	R6	Jumper	-	1/16 W	-	-	0Ω	$\left\|\begin{array}{c} \operatorname{Max} \\ 50 \mathrm{~m} \Omega \end{array}\right\|$	-	1608	-	
56	R9	Jumper	-	1/4 W	-	-	0Ω	Max $50 \mathrm{~m} \Omega$	-	3216	-	
57	R10	Jumper	-	1/16 W	-	-	0Ω	$\left\|\begin{array}{c} \operatorname{Max} \\ 50 \mathrm{~m} \Omega \end{array}\right\|$	-	1608	-	
58	R11	Jumper	-	1/4 W	-	-	0Ω	$\begin{gathered} \mathrm{Max} \\ 50 \mathrm{~m} \Omega \end{gathered}$	-	3216	-	
59	R12	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 181-D } \end{aligned}$	1/16 W	-	-	180Ω	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
60	R13	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 332-D } \end{aligned}$	1/16 W	-	-	$3.3 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
61	R14	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 123-D } \end{aligned}$	1/16 W	-	-	$12 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
62	R15	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 153-D } \end{aligned}$	1/16 W	-	-	$15 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
63	R16	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 202-D } \end{aligned}$	1/16 W	-	-	$2.0 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
64	R17	Jumper	-	1/16 W	-	-	0Ω	Max $50 \mathrm{~m} \Omega$	-	1608	-	
65	R18	Resistor	-	-	-	-	-	-	-	-	-	Not mounted
66	R19	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 242-D } \end{aligned}$	1/16 W	-	-	$2.4 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	

(Continued)

MB39A102

(Continued)

No	$\begin{aligned} & \text { Sym } \\ & \text { bol } \end{aligned}$	Part name	Model name	Specification						Package	Manufacturer	Note
				Rating 1	$\begin{gathered} \text { Rating } \\ 2 \end{gathered}$	$\begin{gathered} \text { Rating } \\ \hline \end{gathered}$	Value	Deviation	Features			
67	R20	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 433-D } \end{aligned}$	1/16 W	-	-	$43 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
68	R21	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 153-D } \end{aligned}$	1/16 W	-	-	$15 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
69	R22	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 202-D } \end{aligned}$	1/16 W	-	-	$2.0 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
70	R23	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 333-D } \end{aligned}$	1/16 W	-	-	$33 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
71	R24	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 203-D } \end{aligned}$	1/16 W	-	-	$20 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
72	R25	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & 242-D \end{aligned}$	1/16 W	-	-	$2.4 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
73	R26	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 433-D } \end{aligned}$	1/16 W	-	-	$43 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
74	R27	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 153-D } \end{aligned}$	1/16 W	-	-	$15 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
75	R28	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 202-D } \end{aligned}$	1/16 W	-	-	$2.0 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
76	R29	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 333-D } \end{aligned}$	1/16 W	-	-	$33 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
77	R30	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 203-D } \end{aligned}$	1/16 W	-	-	$20 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
78	R31	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 302-D } \\ & \hline \end{aligned}$	1/16 W	-	-	$3.0 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
79	R32	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 223-D } \end{aligned}$	1/16 W	-	-	$22 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
80	R33	Resistor	$\begin{array}{\|l} \text { RR0816P- } \\ 153-D \\ \hline \end{array}$	1/16 W	-	-	$15 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
81	R34	Resistor	$\begin{array}{\|l} \hline \text { RR0816P- } \\ \text { 102-D } \\ \hline \end{array}$	1/16 W	-	-	$1.0 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	SSm	
82	R35	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & 303-D \end{aligned}$	1/16 W	-	-	$30 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
83	R36	Resistor	$\begin{aligned} & \text { RR0816P- } \\ & \text { 183-D } \end{aligned}$	1/16 W	-	-	$18 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
84	R37	Resistor	$\begin{array}{\|l\|} \hline \text { RR0816P- } \\ \text { 243-D } \\ \hline \end{array}$	1/16 W	-	-	$24 \mathrm{k} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1608	ssm	
85	SW1	Switch	DMS-6H	-	-	-	-	-	-	-	MATSUKYU	
86	PIN	Terminal pins	WT-2-1	-	-	-	-	-	-	-	MacEight	

SANYO : SANYO Electric Co., Ltd.
TDK : TDK Corporation
SUMIDA : Sumida Corporation
ssm : SUSUMU CO., LTD.
MATSUKYU : Matsukyu Co., Ltd.
MacEight : MacEight Co., Ltd.

INITIAL SETTINGS

(1) Output voltage

$\mathrm{CH} 1: \mathrm{Vol}(\mathrm{V})=1.24 / \mathrm{R} 15 \times(\mathrm{R} 13+\mathrm{R} 14+\mathrm{R} 15) \div 2.5(\mathrm{~V})$
CH2 : Vo2-2 $(\mathrm{V})=1.24 / \mathrm{R} 21 \times(\mathrm{R} 19+\mathrm{R} 20+\mathrm{R} 21) \div 5.0(\mathrm{~V})$
CH3 : Vo3-2 $(\mathrm{V})=1.24 / \mathrm{R} 27 \times(\mathrm{R} 25+\mathrm{R} 26+\mathrm{R} 27) \div 5.0(\mathrm{~V})$
$\mathrm{CH} 4: \operatorname{Vo4}(\mathrm{V})=1.24 / \mathrm{R} 33 \times(\mathrm{R} 31+\mathrm{R} 32+\mathrm{R} 33) \div 3.3(\mathrm{~V})$
(2) Oscillation frequency
fosc $(\mathrm{kHz})=1200000 /(\mathrm{C} 29(\mathrm{pF}) \times \mathrm{R} 37(\mathrm{k} \Omega)) \div 500(\mathrm{kHz})$

(3) Soft-start time

CH 1 : ts $(\mathrm{s})=0.103 \times \mathrm{C} 20(\mu \mathrm{~F}) \div 10.3(\mathrm{~ms})$
CH 2 : ts $(\mathrm{s})=0.103 \times \mathrm{C} 22(\mu \mathrm{~F}) \div 10.3(\mathrm{~ms})$
CH3 : ts $(\mathrm{s})=0.103 \times \mathrm{C} 24(\mu \mathrm{~F}) \doteqdot 10.3(\mathrm{~ms})$
CH 4 : ts $(\mathrm{s})=0.103 \times \mathrm{C} 26(\mu \mathrm{~F}) \div 10.3(\mathrm{~ms})$
(4) Short-circuit detection time
tscp (s) $=0.70 \times \mathrm{C} 28(\mu \mathrm{~F}) \doteqdot 7.0(\mathrm{~ms})$

MB39A102

REFERENCE DATA

- Conversion efficiency - Input voltage
- TOTAL efficiency

- Each CH Efficiency

- Load Reguration (Vin =3.6 V)
- CH1

- CH2, CH3

MB39A102

- CH4

- Output is a feedback control.

- Output is a feedback control none.

MB39A102

(Continued)

- Output is a feedback control none.

MB39A102

■ COMPONENT SELECTION METHODS

1. Board view

MB39A102

The following subsections show the component selection methods with the following common parametric values.

2. CH1: Output 2.5 V (Downconversion Type)

$\operatorname{Vin}($ max $)=6.0 \mathrm{~V}, \mathrm{lo}=250 \mathrm{~mA}$, fosc $=500 \mathrm{kHz}$

(1) P-ch MOS FET (MCH3309 (SANYO product))

$$
\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 10 \mathrm{~V}, \mathrm{ID}=-1.5 \mathrm{~A}, \mathrm{RDs}_{(0 \mathrm{~N})}=340 \mathrm{~m} \Omega(\mathrm{Max}), \mathrm{Qg}=3.2 \mathrm{nC}
$$

- Drain current: Peak value

The peak drain current of this FET must be within its rated current.
If the FET's peak drain current is ID , it is obtained by the following formula.

$$
\begin{aligned}
V_{0} & =V_{\text {IN }} \times \frac{\text { toN }}{t} \\
\text { ton } & =t \times \frac{V_{0}}{V_{\text {IN }}}=\frac{1}{\text { fosc }} \times \frac{V_{0}}{V_{\text {IN }}} \\
\text { ID } & \geq 10+\frac{V_{\mathbb{N}(\operatorname{Max})}-V_{0}}{2 \mathrm{~L}} \times \text { toN } \\
& \geq 0.25+\frac{6-2.5}{2 \times 22 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times 0.417 \\
& \geq 0.316 \mathrm{~A}
\end{aligned}
$$

- Drain-source voltage / Gate-source voltage

The source-drain and gate-source voltages of the FET should be in the rated voltage value of FET.
The FET source-drain voltage (V_{DS}) and gate-source voltage (V_{GS}) are obtained by the following formula.

$$
\begin{aligned}
V_{D S} & \leq-\mathrm{V}_{\mathbb{I N}_{\text {(Max) }}} \\
& \leq-\underline{\mathrm{V}} \\
V_{G S} & \geq \mathrm{V}_{\text {IN (Max) }} \\
& \geq \underline{6 \mathrm{~V}}
\end{aligned}
$$

(2) Schottky Barrier Diode (SBSOO4 (SANYO product))

V_{F} (forward voltage) $=0.35 \mathrm{~V}(\mathrm{Max}):$ at $\mathrm{IF}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{~V}_{\text {RRM }}$ (repeated peak reverse voltage) $=15 \mathrm{~V}$
I_{F} (mean output current) $=1 \mathrm{~A}$, IFsM (surge forward current) $=10 \mathrm{~A}$

- Diode current: Peak value

The peak diode current must be within its rated current.
If the peak diode current is IFsM, it is obtained by the following formula.

$$
\begin{aligned}
\text { IFSM } & \geq l_{0}+\frac{V_{0}}{2 \mathrm{~L}} \times \text { toFF } \\
& \geq 0.25+\frac{2.5}{2 \times 22 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times(1-0.417) \\
& \geq \underline{0.316 \mathrm{~A}}
\end{aligned}
$$

- Diode current: Average value

The mean value of diode current must be within its rated current.
If the mean value of diode current is I_{F}, it is obtained by the following formula.

$$
\begin{aligned}
\text { IF } & \geq \text { lo } \times \frac{\text { tofF }}{t} \\
& \geq 0.25 \times 0.583 \\
& \geq \underline{0.146 \mathrm{~A}}
\end{aligned}
$$

- Repeated peak reverse voltage

The repeated peak reverse voltage must be within its rated voltage.
If the repeated peak reverse voltage is $V_{\text {RRM }}$, it is obtained by the following formula.
$\mathrm{V}_{\text {RRM }} \geq \mathrm{VIN}_{\text {(Max) }}$
$\geq 6 \underline{V V}$

(3) Inductor (SLF12565T-220M3R5 : TDK product)

$22 \mu \mathrm{H}$ (tolerance $\pm 20 \%$), rated current $=0.63 \mathrm{~A}$
The condition for L to be a continuous current within the operating voltge range is obtained by the following formula.
$\mathrm{L} \geq \frac{\mathrm{VIN}(\operatorname{Max})-\mathrm{V}_{\mathrm{O}}}{2 \mathrm{l}_{\mathrm{O}}} \times$ ton
$\geq \frac{6-2.5}{2 \times 0.25} \times \frac{1}{500 \times 10^{3}} \times 0.42$
$\geq 5.88 \mu \mathrm{H}$
The load current satisfying the continuous current condition is obtained by the following formula.
lo $\geq \frac{\mathrm{V}_{\mathrm{O}}}{2 \mathrm{~L}} \times$ toff
$\geq \frac{2.5}{2 \times 22 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times(1-0.42)$
$\geq 66 \mathrm{~mA}$

- Ripple current: Peak value

The peak ripple current must be within the rated current of the inductor.
If the peak ripple current is l , it is obtained by the following formula.
$\mathrm{IL} \geq \mathrm{lo}+\frac{\mathrm{VIN}(\max)-\mathrm{VO}_{\mathrm{O}}}{2 \mathrm{~L}} \times$ ton
$\geq 0.25+\frac{6-2.5}{2 \times 22 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times 0.417$
$\geq \underline{0.316 \mathrm{~A}}$

- Ripple current: Peak-to-peak value

If the peak-to-peak ripple current is $\Delta \mathrm{L}$, it is obtained by the following formula.

$$
\begin{aligned}
\Delta \mathrm{L}_{\mathrm{L}} & =\frac{\mathrm{V}_{\operatorname{IN}(\operatorname{Max})}-\mathrm{V}_{\mathrm{O}}}{\mathrm{~L}} \times \text { toN } \\
& =\frac{6-2.5}{22 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times 0.42 \\
& \doteqdot 0.134 \mathrm{~A}
\end{aligned}
$$

MB39A102

3. CH2, CH3 : (Transformer Conversion Type)

$\mathrm{V}_{\mathrm{In}(\text { max })}=6 \mathrm{~V}$
$V_{\text {o2-1 }}, V_{\text {o3-1 }}=15 \mathrm{~V}$
$\mathrm{l}_{\mathrm{o}-1}, \mathrm{l}_{03-1}=10 \mathrm{~mA}$
$\mathrm{V}_{\text {IN (Min) }}=2.5 \mathrm{~V}$
$V_{02-2,} \mathrm{~V}_{03-2}=5 \mathrm{~V}$
loz-2, $\mathrm{Ios-2}=50 \mathrm{~mA}$
$\mathrm{V}_{02 \cdot 3}=-7.5 \mathrm{~V}$ $l_{02-3}=-5 \mathrm{~mA}$
(1) P-ch MOS FET (MCH3309 (SANYO product))
$\mathrm{V}_{\mathrm{Ds}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}= \pm 10 \mathrm{~V}, \mathrm{Id}=-1.5 \mathrm{~A}, \operatorname{Rds}(0 \mathrm{~N})=340 \mathrm{~m} \Omega(\mathrm{Max}), \mathrm{Qg}=3.2 \mathrm{nC}$
The FET's rated drain current must be at least 0.7 A.
The FET's rated drain-source and gate-source voltages must be at least 9 V .

(2) Schottky Barrier Diode (SB05-05CP (SANYO product))

$V_{\text {rrm }}$ (repeated peak reverse voltage) $=50 \mathrm{~V}$,
IF (average output current) $=500 \mathrm{~mA}$, IFsm (surge forward current) $=5 \mathrm{~A}$
The each diode rated parameter must be at least $\mathrm{V}_{\text {rim }}$ (repeated peak reverse voltage) $=49 \mathrm{~V}$, IF (mean output current) $=50 \mathrm{~mA}$, IFsm (surge forward current) $=0.3 \mathrm{~A}$.

4. CH4:3.3 V output (Sepic Type)

$\mathrm{VIn}_{\mathrm{Imin})}=2.5 \mathrm{~V}, \mathrm{lo}=500 \mathrm{~mA}$, fosc $=500 \mathrm{kHz}$
(1) NPN Tr (CPH3206 (SANYO product))
$\mathrm{V}_{\text {ceo }}=15 \mathrm{~V}, \mathrm{~V}_{\text {cbo }}=15 \mathrm{~V}, \mathrm{Ic}=3 \mathrm{~A}, \mathrm{hfe}=200(\mathrm{Min})$

- Collector current: Peak value

The peak collector current of this Tr must be within its rated current.
If the Tr's peak collector current is Ic , it is obtained by the following formula.

$$
\begin{aligned}
V_{0} & =V_{\mathbb{N}} \times \frac{\text { ton }}{\text { toFF }} \\
\text { ton } & =t \times \frac{V_{0}}{V_{\text {IN }}+V_{0}} \\
& =\frac{1}{\text { fosc }} \times \frac{V_{0}}{V_{\text {IN }}+V_{0}} \\
\text { Ic } & \geq \frac{V_{\text {O }}+V_{\text {IN (Min) }}}{V_{\mathbb{I}(\text { Min })}} \times 10+\frac{1}{2}\left(\frac{1}{L_{3}}+\frac{1}{L_{4}}\right) \times V_{\text {IN (Min) }} \times \text { ton } \\
& \geq \frac{1}{3.3+2.5} \times 0.5+\frac{1}{2}\left(\frac{1}{10 \times 10^{-6}}+\frac{1}{15 \times 10^{-6}}\right) \times 2.5 \times \frac{1}{500 \times 10^{3}} \times 0.69 \\
& \geq 1.397 \mathrm{~A}
\end{aligned}
$$

Collector-emitter voltage / Collector-base voltage
The collector-emitter and collector-base voltages of the Tr should be in the rated voltage value of Tr .

$\geq 6+3.3$
$\geq 9.3 \mathrm{~V}$

(2) Schottky Barrier Diode (SBS004 (SANYO product))

$\mathrm{V}_{\mathrm{F}}($ forward voltage $)=0.35 \mathrm{~V}(\mathrm{Max}):$ at $\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{RRM}}($ repeated peak reverse voltage) $=15 \mathrm{~V}$
IFSM (surge forward current) $=10 \mathrm{~A}, \mathrm{IF}$ (mean output current) $=1 \mathrm{~A}$

- Diode current: Peak value

The peak current of this diode must be within its rated current.
If the diode's peak current is $I_{\text {FSM, }}$ it is obtained by the following formula.

$$
\begin{aligned}
I_{\text {FSM }} & \geq \frac{V_{O+}+\operatorname{VIN}(\operatorname{Min})}{V_{\operatorname{IN}(\operatorname{Min})}} \times l_{0}+\frac{1}{2}\left(\frac{1}{L_{3}}+\frac{1}{L_{4}}\right) \times V_{o} \times \text { toFF } \\
& \geq \frac{3.3+2.5}{2.5} \times 0.5+\frac{1}{2}\left(\frac{1}{10 \times 10^{-6}}+\frac{1}{15 \times 10^{-6}}\right) \times 3.3 \times \frac{1}{500 \times 10^{3}} \times(1-0.569) \\
& \geq 1.397 \mathrm{~A}
\end{aligned}
$$

- Diode current: Average value

The mean value of diode current must be within its rated current.
If the mean value of diode current is I_{F}, it is obtained by the following formula.
$\mathrm{I}_{\mathrm{F}} \geq \mathrm{lo}$
$\geq \underline{0.5 \mathrm{~A}}$

- Repeated peak reverse voltage

The repeated peak reverse voltage of this diode must be within its rated voltage.
If the diode's repeated peak reverse voltage is $\mathrm{V}_{\text {rrm }}$, it is obtained by the following formula.
$\begin{aligned} \mathrm{V}_{\text {RRM }} & \geq \mathrm{V}_{\text {IN }(\text { Max })}+\mathrm{V}_{\mathrm{O}} \\ & \geq 6+3.3 \\ & \geq \underline{9.3 \mathrm{~V}}\end{aligned}$
(3) Inductor (L3 : RLF5018T-100MR94, TDK product)
$10 \mu \mathrm{H}$ (tolerance $\pm 20 \%$), rated current $=0.94 \mathrm{~A}$
The condition for L to be a continuous current within the operating voltge range is obtained by the following formula.
$\mathrm{L} \geq \frac{\mathrm{V}_{\operatorname{In}}(\max)^{2}}{2 \mathrm{loVO}_{\mathrm{O}}} \times$ ton
$\geq \frac{6^{2}}{2 \times 0.5 \times 3.3} \times \frac{1}{500 \times 10^{3}} \times 0.355$
$\geq 7.7 \underline{\mu}$
The load current satisfying the continuous current condition is obtained by the following formula.
$\begin{aligned} \text { lo } & \geq \frac{\mathrm{V}_{\text {IN }}(\text { max })^{2}}{2 L V_{0}} \times \text { ton } \\ & \geq \frac{6^{2}}{2 \times 10 \times 10^{-6} \times 3.3} \times \frac{1}{500 \times 10^{3}} \times 0.355 \\ & \geq \underline{0.387 \mathrm{~A}}\end{aligned}$
Note : The continuous current condition becomes a large current value compared with the current value obtained by L4.

MB39A102

- IL current: Peak value

The peak IL current of this inductor must be within its rated current.
IL current is obtained by the following formula.
$\mathrm{L} \quad \geq \frac{\mathrm{V}_{0}}{\mathrm{VIN}_{\text {(Min) }}} \times \mathrm{lo}+\frac{\mathrm{V}_{\text {IN (Min) }}}{2 \mathrm{~L}} \times$ toN
$\geq \frac{3.3}{2.5} \times 0.5+\frac{2.5}{2 \times 10 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times 0.57$
$\geq 0.802 \mathrm{~A}$

(4) Inductor (L4 : RLF5018T-150MR76, TDK product)

$15 \mu \mathrm{H}$ (tolerance $\pm 20 \%$), rated current $=0.76 \mathrm{~A}$
The condition for L to be a continuous current within the operating voltge range is obtained by the following formula.
$\mathrm{L} \geq \frac{\mathrm{V}_{\text {in (max) }}}{2 \mathrm{l}_{\mathrm{o}}} \times$ ton
$\geq \frac{6}{2 \times 0.5} \times \frac{1}{500 \times 10^{3}} \times 0.355$
$\geq 4.3 \mu \mathrm{H}$
The load current satisfying the continuous current condition is obtained by the following formula.
lo $\geq \frac{\operatorname{Vin}_{\text {(max }}}{2 \mathrm{~L}} \times$ ton
$\geq \frac{6}{2 \times 15 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times 0.355$
$\geq \underline{0.142 \mathrm{~A}}$
Note : The continuous current condition becomes a large current value compared with the current value obtained by L3.

- IL current: Peak value

The peak IL current of this inductor must be within its rated current.
IL current is obtained by the following formula.
$\mathrm{IL} \geq \mathrm{lo}+\frac{\mathrm{Vin}_{\text {(Max) }}}{2 \mathrm{~L}} \times$ ton
$\geq 0.5+\frac{6}{2 \times 15 \times 10^{-6}} \times \frac{1}{500 \times 10^{3}} \times 0.355$
$\geq \underline{0.642 \mathrm{~A}}$

MB39A102

■ ORDERING INFORMATION

EV board part No.	EVboard version No.	Note
MB39A102EVB	MB39A102EV Board Rev. 2.0	IC Package TSSOP

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

