256K x 16 Static RAM #### **Features** - Low Voltage range: - -2.7V-3.3V - · Ultra-low active power - Typical active current: 1.5 mA @ f = 1MHz Typical active current: 7 mA @ f = f_{max} - · Low standby power - Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features - · Automatic power-down when deselected - CMOS for optimum speed/power #### **Functional Description** The WCMA4016U4X is a high-performance CMOS static RAMs organized as 256K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This device is ideal for portable applications such as cellular telephones. The devices also have an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99% when deselected ($\overline{\text{CE}}$ HIGH or both $\overline{\text{BLE}}$ and $\overline{\text{BHE}}$ are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW). Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{17}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$). Reading_from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes. The WCMA4016U4X is available in a 48-ball FBGA package. # Pin Configuration^[1, 2] ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage to Ground Potential...-0.5V to V_{ccmax} + 0.5V DC Voltage Applied to Outputs in High Z State $^{[3]}$-0.5V to $\rm V_{CC}$ + 0.3V DC Input Voltage^[3].....-0.5V to V_{CC} + 0.3V | Output Current into Outputs (LOW) | 20 mA | |--|---------| | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | ## **Operating Range** | Device | Range | Ambient
Temperature | v _{cc} | |-------------|------------|------------------------|-----------------| | WCMA4016U4X | Industrial | -40°C to +85°C | 2.7V to 3.3V | #### **Product Portfolio** | | | | | | | Po | wer Dis | sipation | (Industr | ial) | |-------------|-----------------------|--------------------------------------|-----------------------|-------|----------------------------|------|---------------------|----------|-----------------------------|--------------| | Product | V _{CC} Range | | | Speed | Operating, I _{CC} | | | | Standby (I _{SB2}) | | | Froduct | Product | | Эре | Speeu | f = 1 | MHz | f = 1 | max | Sia | iluby (ISB2) | | | V _{CC(min.)} | V _{CC(typ.)} ^[4] | V _{CC(max.)} | | Typ. ^[4] | Max. | Typ. ^[4] | Max. | Typ. ^[4] | Max. | | WCMA4016U4X | 2.7V | 3.0V | 3.3V | 70 ns | 1.5 mA | 3 mA | 7 mA | 15 mA | 7 μΑ | 15 μΑ | #### Notes: - NC pins are not connected to the die. E3 (DNU) can be left as NC or Vss to ensure proper application. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. | | | | | V | /CMA4016U | 4X | | |------------------|--|--|---|------|---------------------|------------------------|------| | Param-
eter | Description | Test Con | ditions | Min. | Typ. ^[4] | Max. | Unit | | V _{OH} | Output HIGH Voltage | $I_{OH} = -1.0 \text{ mA}$ | $V_{CC} = 2.7V$ | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 2.1mA | V _{CC} = 2.7V | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | 2.2 | | V _{CC} + 0.3V | V | | V _{IL} | Input LOW Voltage | | | -0.3 | | 0.8 | V | | I _{IX} | Input Leakage Cur-
rent | $GND \leq V_I \leq V_{CC}$ | | -1 | | +1 | μΑ | | I _{OZ} | Output Leakage Cur-
rent | GND ≤ V _O ≤ V _{CC} , Ou | $GND \leq V_O \leq V_CC, Output Disabled$ | | | +1 | μΑ | | | V _{CC} Operating Supply | $f = f_{MAX} = 1/t_{RC}$ | $V_{CC} = 3.3V$ | | 7 | 15 | | | I _{CC} | Current | f = 1 MHz | I _{OUT} = 0 mA
CMOS Levels | | 1.5 | 3 | mA | | I _{SB1} | Automatic CE
Power-Down Cur-
rent— CMOS Inputs | $\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ or $\text{V}_{\text{f}} = \text{f}_{\text{max}}$ (Address and f=0 (OE,WE,BHE and | | 7 | 15 | μА | | | I _{SB2} | Automatic CE
Power-Down Cur-
rent— CMOS Inputs | $\overline{CE} \ge V_{CC} - 0.2V$
$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$ | V _{IN} ≤ 0.2V, | | | | | # Capacitance^[5] | Parameter Description | | Test Conditions | Max. | Unit | |-----------------------|--------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ.)}$ | 8 | pF | # **Thermal Resistance** | Description | Test Conditions | Symbol | BGA | Units | |---|---|-------------------|-----|-------| | Thermal Resistance (Junction to Ambient) ^[5] | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | Θ_{JA} | 55 | °C/W | | Thermal Resistance (Junction to Case) ^[5] | | $\Theta_{\sf JC}$ | 16 | °C/W | #### Note 5. Tested initially and after any design or process changes that may affect these parameters. #### **AC Test Loads and Waveforms** THÉVENIN EQUIVALENT Equivalent to: | Parameters | 3.0V | Unit | |-----------------|-------|-------| | R1 | 1.105 | KOhms | | R2 | 1.550 | KOhms | | R _{TH} | 0.645 | KOhms | | V _{TH} | 1.75V | Volts | ## Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions | Min. | Typ. ^[4] | Max. | Unit | |---------------------------------|---|--|-----------------|---------------------|--------------------|------| | V_{DR} | V _{CC} for Data Retention | | 1.5 | | V _{ccmax} | V | | I _{CCDR} | Data Retention Current | $V_{CC} = 1.5V$
$CE \ge V_{CC} - 0.2V$,
$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$ | | 3 | 10 | μΑ | | t _{CDR} ^[5] | Chip Deselect to Data
Retention Time | | 0 | | | ns | | t _R ^[6] | Operation Recovery Time | | t _{RC} | | | ns | # Data Retention Waveform^[7] #### Note: - 6. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 100μs or stable at V_{CC(min.)} > 100 μs. 7. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE. ## Switching Characteristics Over the Operating Range^[8] | | | 70 | ns | | | |-----------------------------------|---|---------|----|------|--| | Parameter | Description | Min Max | | Unit | | | READ CYCLE | | | 1 | | | | t _{RC} | Read Cycle Time | 70 | | ns | | | t _{AA} | Address to Data Valid | | 70 | ns | | | t _{OHA} | Data Hold from Address Change | 10 | | ns | | | t _{ACE} | CE LOW to Data Valid | | 70 | ns | | | t _{DOE} | OE LOW to Data Valid | | 35 | ns | | | t _{LZOE} | OE LOW to Low Z ^[9] | 5 | | ns | | | t _{HZOE} | OE HIGH to High Z ^[9, 11] | | 25 | ns | | | t _{LZCE} | CE LOW to Low Z ^[9] | 10 | | ns | | | t _{HZCE} | CE HIGH to High Z ^[9, 11] | | 25 | ns | | | t _{PU} | | 0 | | ns | | | t _{PD} | | | 70 | ns | | | t _{DBE} | BHE / BLE LOW to Data Valid | | 70 | ns | | | t _{LZBE} ^[10] | BHE / BLE LOW to Low Z ^[9] | 5 | | ns | | | t _{HZBE} | BHE / BLE HIGH to High Z ^[9, 11] | | 25 | ns | | | WRITE CYCLE ^[12] | | | • | | | | t _{WC} | Write Cycle Time | 70 | | ns | | | t _{SCE} | CE LOW to Write End | 60 | | ns | | | t _{AW} | Address Set-Up to Write End | 60 | | ns | | | t _{HA} | Address Hold from Write End | 0 | | ns | | | t _{SA} | Address Set-Up to Write Start | 0 | | ns | | | t _{PWE} | WE Pulse Width | 50 | | ns | | | t _{BW} | BHE / BLE Pulse Width | 60 | | ns | | | t _{SD} | Data Set-Up to Write End | 30 | | ns | | | t _{HD} | Data Hold from Write End | 0 | | ns | | | t _{HZWE} | WE LOW to High Z ^[9, 11] | | 25 | ns | | | t _{LZWE} | WE HIGH to Low Z ^[9] | 5 | | ns | | #### Notes: - 8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of $V_{CC(typ.)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZDE} , and t_{HZOE} , and t_{HZWE} is less than t_{LZOE} . - At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZDE}, that t_{LZDE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZDE}, t_{HZDE}, and t_{HZWE} is less than t_{LZDE}, that t_{HZDE}, and t_{HZWE} is less than t_{LZDE}, that t_{HZDE} is less than t_{LZDE}, that t_{HZDE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZDE}, that t_{HZDE} is less than t_{LZDE}, that t_{HZDE} is less than t_{LZDE}, that t_{LZDE}, and t_{HZWE} the t_{LZDE}, that t # **Switching Waveforms** # Read Cycle No. 1 (Address Transition Controlled) [13, 14] # Read Cycle No. 2 (OE Controlled) [14, 15] #### Notes: - Device is continuously selected. OE, CE = V_{IL}, BHE and/or BLE = V_{IL}. WE is HIGH for read cycle. Address valid prior to or coincident with CE, BHE, BLE transition LOW. # Switching Waveforms (continued) - 16. Data I/O is high-impedance if OE = V_{IH}. 17. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. 18. During this period, the I/Os are in output state and input signals should not be applied. # Switching Waveforms (continued) # Write Cycle No. 3 (WE Controlled, OE LOW) [17] # Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [17] # **Typical DC and AC Parameters** (Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C.$) ## Operating Current vs. Supply Voltage Standby Current vs. Supply Voltage SUPPLY VOLTAGE (V) ## **Truth Table** | CE | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----|----|----|-----|-----|--|---------------------|----------------------------| | Н | Х | Х | Х | Х | High Z | Deselect/Power-Down | Standby (I _{SB}) | | Х | Х | Х | Н | Н | High Z | Deselect/Power-Down | Standby (I _{SB}) | | L | Н | L | L | L | Data Out (I/O _O -I/O ₁₅) | Read | Active (I _{CC}) | | L | Н | L | Н | L | Data Out (I/O _O –I/O ₇);
I/O ₈ –I/O ₁₅ in High Z | Read | Active (I _{CC}) | | L | Н | L | L | Н | Data Out (I/O ₈ -I/O ₁₅);
I/O ₀ -I/O ₇ in High Z | Read | Active (I _{CC}) | | L | Н | Н | L | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | L | Н | High Z | Output Disabled | Active (I _{CC}) | | L | L | Х | L | L | Data In (I/O _O -I/O ₁₅) | Write | Active (I _{CC}) | | L | L | Х | Н | L | Data In (I/O _O –I/O ₇);
I/O ₈ –I/O ₁₅ in High Z | Write | Active (I _{CC}) | | L | L | Х | L | Н | Data In (I/O ₈ -I/O ₁₅);
I/O ₀ -I/O ₇ in High Z | Write | Active (I _{CC}) | # **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|------------------|-----------------|------------------------|--------------------| | 70 | WCMA4016U4X-FF70 | FB48A | 48-Ball Fine Pitch BGA | Industrial | # **Package Diagrams** # 48-Ball (6.0 mm x 8.0 mm x 1.0 mm) Fine Pitch BGA, FB48A Top View | Docur | Document Title: WCMA4016U4X 256K x 16 STATIC RAM | | | | | | | | | | |-------|--|--------|------------|-----------------|-----------------------|--|--|--|--|--| | REV. | Spec # | ECN# | Issue Date | Orig. of Change | Description of Change | | | | | | | ** | 38-14013 | 115230 | 4/24/2002 | MGN | New Datasheet | | | | | |