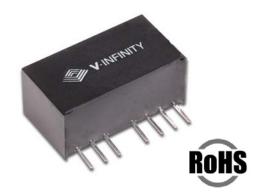


page 1 of 3

date 02/2008


PART NUMBER: VWRAS2 series DESCRIPTION: dc/dc converter

Description

Designed to convert a wide input voltage range into an isolated regulated voltage, the VWRAS2-SIP series is well suited for providing board-mount local supplies in a wide range of applications, including mixed analog/digital circuits, test & measurement equip., process/machine controls, datacom/telecom fields, etc...

Features

- ·Wide (2:1) input range
- ·High efficiency to 80%
- ·Regulated
- ·Dual voltage output
- -I/O Isolation 1500VDC
- ·No heatsink required
- ·Short circuit protection
- -Remote on/off
- -MTBF >1,000,000 hrs
- ·Temperature range: -40°C~+85°C

Model	Input Voltage			Output	Output Current			Package
Number	Nominal	Range	Max.	Voltage	Max.	Min.	Efficiency	Style
VWRAS2-D5-D5-SIP	5 Vdc	4.5~9.0 Vdc	11 Vdc	±5 Vdc	±200 mA	±20 mA	67%	SIP
VWRAS2-D5-D9-SIP	5 Vdc	4.5~9.0 Vdc	11 Vdc	±9 Vdc	±111 mA	±11 mA	71%	SIP
VWRAS2-D5-D12-SIP	5 Vdc	4.5~9.0 Vdc	11 Vdc	±12 Vdc	±83 mA	±8 mA	72%	SIP
VWRAS2-D5-D15-SIP	5 Vdc	4.5~9.0 Vdc	11 Vdc	±15 Vdc	±67 mA	±7 mA	73%	SIP
VWRAS2-D12-D5-SIP	12 Vdc	9.0~18.0 Vdc	22 Vdc	±5 Vdc	±200 mA	±20 mA	75%	SIP
VWRAS2-D12-D9-SIP	12 Vdc	9.0~18.0 Vdc	22 Vdc	±9 Vdc	±111 mA	±11 mA	76%	SIP
VWRAS2-D12-D12-SIP	12 Vdc	9.0~18.0 Vdc	22 Vdc	±12 Vdc	±83 mA	±8 mA	78%	SIP
VWRAS2-D12-D15-SIP	12 Vdc	9.0~18.0 Vdc	22 Vdc	±15 Vdc	±67 mA	±7 mA	78%	SIP
VWRAS2-D24-D5-SIP	24 Vdc	18.0~36.0 Vdc	40 Vdc	±5 Vdc	±200 mA	±20 mA	76%	SIP
VWRAS2-D24-D9-SIP	24 Vdc	18.0~36.0 Vdc	40 Vdc	±9 Vdc	±111 mA	±11 mA	78%	SIP
VWRAS2-D24-D12-SIP	24 Vdc	18.0~36.0 Vdc	40 Vdc	±12 Vdc	±83 mA	±8 mA	79%	SIP
VWRAS2-D24-D15-SIP	24 Vdc	18.0~36.0 Vdc	40 Vdc	±15 Vdc	±67 mA	±7 mA	78%	SIP
VWRAS2-D48-D5-SIP	48 Vdc	36.0~72.0 Vdc	80 Vdc	±5 Vdc	±200 mA	±20 mA	75%	SIP
VWRAS2-D48-D9-SIP	48 Vdc	36.0~72.0 Vdc	80 Vdc	±9 Vdc	±111 mA	±11 mA	78%	SIP
VWRAS2-D48-D12-SIP	48 Vdc	36.0~72.0 Vdc	80 Vdc	±12 Vdc	±83 mA	±8 mA	80%	SIP
VWRAS2-D48-D15-SIP	48 Vdc	36.0~72.0 Vdc	80 Vdc	±15 Vdc	±67 mA	±7 mA	80%	SIP

Note:

1. All specifications measured at TA=25°C, humidity <75%, nominal input voltage and rated output load unless otherwise specified.

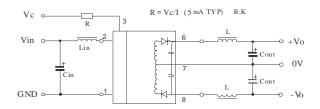
Output Specifications

Item	Test conditions	Min.	Тур.	Max.	Units
2W Output power		0.2		2	W
Output voltage accuracy	Refer to recommended circuit		±1	±3	%
Line Regulation	Input Voltage from low to high		±0.2	±0.5	%
Load Regulation	10% to 100% full load		±0.5	±1.0	%
Temperature drift	Refer to recommended circuit			0.03	%/°C
Output ripple& noise	20 Hz Bandwidth		35	100	mVp-p
Switching frequency	100% load, nominal input	80K		550K	Hz

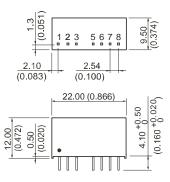
page 2 of 3

date 02/2008

PART NUMBER: VWRAS2 series DESCRIPTION: dc/dc converter


General Specifications

Continuous		
15°C typ., 35°C max.		
Free air convection		
100mW (typical)		
-40°C to +85°C		
-50°C to +125°C		
300°C (1.5mm from case for 10sec.		
<95%		
Plastic (UL94-V0)		
>1,000,000 hrs.		


Isolation Specifications

Item	Test Conditions	Min.	Тур.	Max.	Units	
Isolation Voltage	Flash tested for 1 min.	1500			Vdc	
Isolation Resistance	Test at 500 Vdc	1000			ΜΩ	
Isolation Capacitance	Input/Output		80		PF	

Typical Characteristics

Outline Dimensions & Recommended Layout Pattern

Note: Unit:mm(inch)
Pin section:0.50*0.30mm(0.020*0.012inch)
Pin tolerances:±0.10mm(±0.004inch)
General tolerances:±0.25mm(±0.010inch)

Recommended circuit

It is best to test with full load and not to test without load. To further reduce output ripple, you may increase the external capacitor, choose a capacitor with low ESR, or add external inductor to the circuit as shown on the left.

General:

Cin: 5V, 12V 100 μ F 24V, 48V 10 μ F ~ 47 μ F Cout:100 μ F(typ)

Lin: 4.7μH ~ 120 μH Lout: 2.2μH ~ 10μH

First Angle Projection 🕣 🏶

RECOMMENDED FOOTPRINT Top view, grid:2.54mm(0.1inch), diameter:1.00mm

Dual Output & Single Output

FOOTPRINT DETAILS

Pin	Dual	
1	GND	
2	Vin	
3	CTRL	
5	NC	
6	+Vo	
7	OV	
8	-Vo	

NC:No Connection

page 3 of 3

date 02/2008

Application Notes:

PART NUMBER: VWRAS2 series

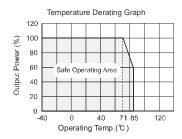

- All of the VWRAS2-SIP Series have been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load(Figure 3). If you want to further decrease the input/output ripple, you can increase capacitance properly or choose capacitors with low ESR. However, the capacitance should not be too high(Table 2).

Table 2

External Capacitor Table

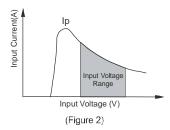

External Supusitor rabio						
Single Vout(VDC)	Cout(uF)	Dual Vout(VDC)	Cout(uF)			
3.3	2200	-	-			
5	1000	±5	±560			
9820	820	±9	±470			
12	680	±12	±330			
15	560	±15	±270			
24	470	-	-			

Figure 3

DESCRIPTION: dc/dc converter

Input current
 Nominal input voltage range. The input current of the power supply must be sufficient to the startup current (Ip) of the DC/DC module (Figure 2)

Output Load
 In order to ensure the product operates
 efficiently and reliably, make sure the specified range of input voltage is not exceeded.

No parallel connection or plug and play.

NC Terminals
 Unless otherwise specified, NC terminals of all series are used for converter's interior circuit connection, and are not allowed connection of any external circuit.

- Remote on/off control (see figure 1)

ON: When control pin (CTRL pin 3) open or Ic \leq 0.5mA, converter will have normal output. OFF: With a 3-10mA input current (Ic) to pin 3, output will be disabled. Under no conditions should input current (Ic) exceed 20mA. The Value of R in Figure 1 can be derived as follows:

example 1: Logic circuit — Apply 5V TTL logic signal on Vc to disable output

$$R = \frac{5V - 0.7V - 0.65V}{0.05 \Delta} = 730 \Omega$$
 Choose 720 \Omega resistor

example 2 : Short Vin to Vc — Apply 12V on Vc to disable output

R=
$$\frac{12V - 0.7V - 0.65V}{.005A}$$
 = 2130 Ω Choose 2K Ω resistor