

AQ4041

Precision Micropower Shunt Voltage Reference SOT23, SC70, and TO92 Package

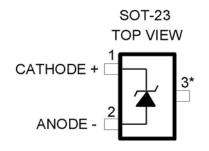
Product Specification

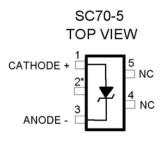
Revision 1.1

June 14, 2007

General Description

The AQ4041 is a precision voltage reference offered in very small packages SOT23 and SC70 for applications where power and space are critical. Its precision reference is trimmed during wafer sort to insure accuracy and tight distributions 1.225V. centered at The minimum operating current is less than 40 µA to keep power consumption at a minimum. bandgap reference has curvature correction and low dynamic impedance to ensure stable accuracy over a wide range of operating currents and temperatures


Applications


- Power supplies
- Low TC low voltage reference
- Portable, Battery-Powered Equipment
- Instrumentation

Features

- Offered in small packages: SOT23 and SC70
- 40uA to 12mA operation
- Low TC voltage reference 100ppm/°C
- Stable with no load capacitance
- RoHS compliant

Pin Configuration

TO-92 TOP VIEW

Pin Descriptions

Pin Name	Function
CATH	+ Input, nominally 1.225V in normal operation.
Anode	- Ground
NC	This pin must be left floating or connect to Anode

^{*}This pin must be left unconnected or connected to pin 2

Ordering Information

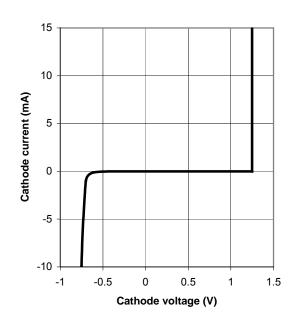
Device	Operating Tj	%Tol	PKG Type	Vout	Wrap	Ordering Number
AQ4041	-40C° ≤ 85C°	0.5	SOT-23-3	1.225V	T&R	AQ4041EZ-M3-12-TRL
AQ4041	-40C° ≤ 85C°	1.0	SOT-23-3	1.225V	T&R	AQ4041EY-M3-12-TRL
AQ4041	-40C° ≤ 85C°	0.5	SC70-5	1.225V	T&R	AQ4041EZ-C5-12-TRL
AQ4041	-40C° ≤ 85C°	1.0	SC70-5	1.225V	T&R	AQ4041EY-C5-12-TRL
AQ4041	-40C° ≤ 85C°	0.5	TO92-3	1.225V	T&R	AQ4041EZ-N3-12-TRL
AQ4041	-40C° ≤ 85C°	1.0	TO92-3	1.225V	T&R	AQ4041EY-N3-12-TRL

Note: The TRL parts are Lead Free and RoHS compliant.

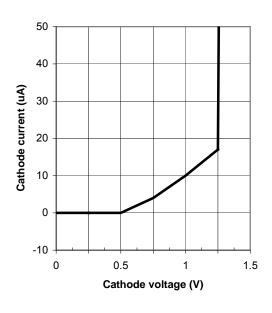
Absolute Maximum Ratings

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These stress ratings only, and functional operation of the device at these or any conditions beyond those indicated under recommended Operating Conditions is not implied. Exposure to "Absolute Maximum Rating" for extended periods may affect device reliability. Use of standard ESD handling precautions is required.

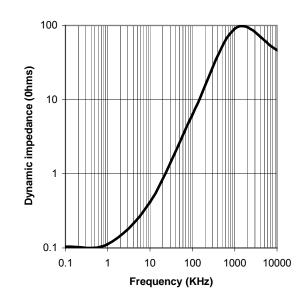
Parameter	Value	Units
ANODE Forward Current	+50	mA
ANODE Reverse Current	-50	mA
Operating Junction Temperature	150	°C
Lead Temperature (soldering 10 seconds)	260	°C
Storage Temperature Range	-65 to +150	°C
ESD (Human Body Model)	2	KV


Electrical Specifications

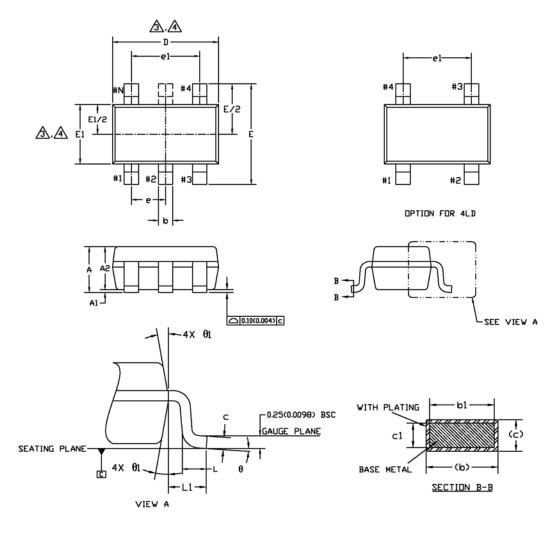
Electrical characteristics are guaranteed at 25°C unless otherwise stated. Ambient temperature must be de-rated based upon power dissipation and package thermal characteristics.


Symbol	Parameter	Conditions		Min	Тур	Max	Units
V_R	Reverse Breakdown Voltage	I _R =100μA	0.5% option	1.219	1.225	1.231	V
v R	Reverse breakdown voltage	IR - ΙΟΟμΑ	-40°C <tj<85°c< td=""><td>1.211</td><td></td><td>1.239</td><td>V</td></tj<85°c<>	1.211		1.239	V
\/	Poverse Preskdown Voltage	L =100uA	1.0% option	1.213	1.225	1.237	V
V_R	Reverse Breakdown Voltage	I _R =100μA	-40°C <tj<85°c< td=""><td>1.201</td><td></td><td>1.249</td><td>V</td></tj<85°c<>	1.201		1.249	V
ΔV_R	V _R Temperature deviation	–40°C <tj<85°c.< td=""><td></td><td>50</td><td>100</td><td>ppm/°C</td></tj<85°c.<>			50	100	ppm/°C
I _{R(min)}	Minimum Operating Current				18	40	μΑ
$\Delta V_{R}/\Delta I_{R}$	V _R deviation with I _R	$I_{R(min)} \le I_R \le 12 \text{ mA}$			2	6	mV
		–40°C <tj<85°c< td=""><td></td><td>2</td><td>8</td><td>mV</td></tj<85°c<>			2	8	mV
Zr	Dynamic Output Impedance	I_R =1mA, IAC = 0.1 I_R , f = 120Hz			0.1	1.5	Ω
θΝ	Wideband Noise	I_R =1mA, 10Hz \leq f \leq 10 kHz			20		μV _{rms}
ΔV_R	Long term stability	T =1000 hrs, T =25°C, IR =100μA			120		ppm

Typical performance curves


Cathode current vs Cathode voltage

Cathode current vs Cathode voltage

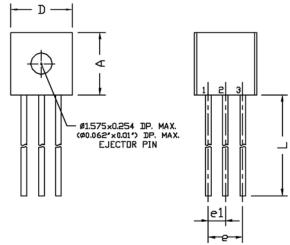


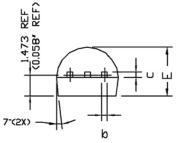
Dynamic impedance vs frequency

Package Dimensions

SOT23-3, SOT23-4, SOT23-5, SOT23-6

S	COMMON					
B	DIMENSIONS MILLIMETER			DIMENSIONS INCH		
Ľ	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	1.20	1.30	1.40	0.047	0.051	0.055
A1	0.05	-	0.15	0.002	-	0.006
A2	0.90	1.15	1.30	0.035	0.045	0.051
b	0.35	-	0.50	0.013	-	0.020
b1	0.35	0.40 0.45		0.013	0.015	0.017
С	0.08	-	0.22	0.003	-	0.008
c1	0.08	0.13	0.20	0.003	0.005	0.007
ם	2.90 BSC				0.114 B	SC
Ε	2.80 B2C				0.110 B	sc
E1		1.60 BS	C		0.062 I	3SC
6		0.95 B	SC	0.037 BSC		
e1		1.90 BS	C		0.074 I	32C
L	0.35	0.45	0.55	0.013	0.017	0.021
L1		0.60 REF.			0.023 F	REF.
θ	0*	4*	8*	0*	4*	8*
61		10° TY	D		10° TY	•

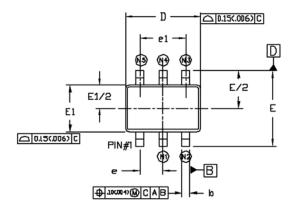

NOTE :

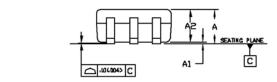

Dimensioning and tolerancing per ASME Y 14.5 M - 1994. Dimensions are in millimeters. Converted inch dimension are not necessarily exact. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 0.15 mm per side. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15 mm per side. Top package may be smaller than the bottom package Dimension D and E1 are determine at the outermost extremes of the plastic body exclusive of mold flash gate burrs and interlead flash.

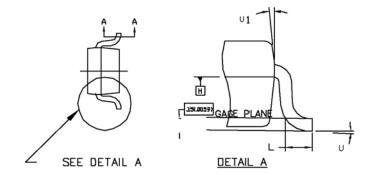
gate burrs and interlead flash. Terminal numbers are shown for reference only. Die is facing up for molding. Die is facing down for

Package Dimensions

TO92-2, TO92-3

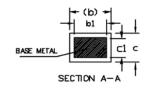

Ş	COMMON						
B B	DIMENSIONS MILLIMETER		DIMENSIONS INCH				
į	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	4,472	4,572	4.672	0.176	0.180	0.184	
b	0.381	0.406	0.431	0.015	0.016	0.017	
c	0.356	0.406	0.456	0.014	0.016	0.018	
D	4.472	4.572	4.672	0.176	0.180	0.184	
Ε	3.456	3.556	3.656	0.136	0.140	0.144	
6	2.413	2.540	2.667	0.095	0.100	0.105	
e1	1.143	1.270	1.397	0.045	0.050	0.055	
L	13.87	13.97	14.07	0.546	0.550	0.554	


NOTES :


- 1. CONTROLLING DIMENSION : MILLIMETER. CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.
 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.
 3. FOR 2 LEAD PACKAGE CENTER LEAD IS CLIPPED.

Package Dimensions

SC70-3, SC70-4, SC70-5, SC70-6



NOTE :

- CONTROLLING DINENSION: MILLIMETER. CONVERTED INCH
 DIMENSION ARE NOT NECESSARILY EXACT.
 DINENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
 DINENSION'D' DOES NOT INCLUDE NOLD FLASH,PROTRUSION
 OR GATE BURR, NOLD FLASH,PROTRUSION OR GATE BURR
 SHALL NOT EXCEED 0.15MM(0.006') PER END.

SHALL NOT EXCEED 0.15MM(0.006*) PER END.
DIMENSION E1 DO NOT INCLUDE INTER-LEAD
FLASH DR PROTRUSION,INTER-LEAD FLASH DR PROTRUSION
SHALL NOT EXCEED 0.15MM (0.006*) PER SIDE.
THE PACKAGE TOP BE SMALLER THAN THE PACKAGE BOTTOM.
DIMENSION D AND EL ARE DETERMINED AT THE OUTERMOST
EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF NOLD FLASH
TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT
INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM
OF THE PLASTIC BODY

S	COMMON						
× 00 0 -	DIMENSI	ONS HILLE	NETER	DINEN	CH		
Ľ	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.80	ı	1.10	0.031	1	0.043	
A1	0	ı	0.10	0	-	0.004	
A2	0.80	0.90	1.00	0.031	0.035	0.040	
b	0.15	-	0.30	0.006	-	0.012	
b1	0.15	0.20	0.25	0.006	0.008	0.010	
c	80.0	-	0.25	0.003	-	0.010	
c1	80.0	0.13	0.20	0.003	0.005	0.008	
D	1.90	2.10	2.15	0.074	0.082	0.084	
Ε	2.00	2.10	2.20	0.078	0.082	0.086	
E1	1.15	1,25	1.35	0.045	0.050	0.055	
е		0.65 BS	SC		0.0255	BSC	
e1		1.30 BS	C	0.0512 BSC			
L	0.26	0.36	0.46	0.010	0.014	0.018	
U	0*	-	8-	0-	-	8-	
U1	4*	-	10*	4-	-	10-	

PIN	LEAD COUNT				
CODE	3	4	5	6	
N1	-	-	2	2	
N2	2	2	5	3	
N3	-	3	4	4	
N4	3	-	ı	5	
N5	-	4	5	6	

Contact Information

Acutechnology Semiconductor Inc. TEL: (408) 259-2300 3487 McKee Rd. Suite 52 FAX: (408) 259-9160

San Jose CA, USA 95127 website: www.acutechnology.com

Disclaimer

The information furnished by Acutechnology in this data sheet is believed to be accurate and reliable. However, Acutechnology assumes no responsibility for its use. Acutechnology reserves the right to change circuitry and specifications at any time without notification to the customer.

Life Support Policy

Acutechnology Products are not designed or authorized for use as components in life support devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user.