

GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz

Typical Applications

This HMC-ALH232 is ideal for:

- 40 Gb/s Lithium Niobate/ Mach Zender Fiber Optic Modulators
- Broadband Gain Block for Test & Measurement Equipment
- Broadband Gain Block for RF Applications
- Military & Space

Functional Diagram

Features

Small Signal Gain: 12 dB
Output Voltage: up to 8V pk-pk

Single-Ended I/Os

High Speed Performance: 46 GHz 3 dB Bandwidth

Low Power Dissipation: 0.9 W Small Die Size: 2.1 x 1.70 x 0.1 mm

General Description

The HMC-AUH232 is a GaAs MMIC HEMT Distributed Driver Amplifier die which operates between DC and 43 GHz and provides a typical 3 dB bandwidth of 46 GHz. The amplifier provides 12 dB of small signal gain while requiring only 180 mA from a +5V supply voltage. The HMC-AUH232 exhibits very good gain and phase ripple to 40 GHz, and can output up to 8V peak-to-peak with low jitter, making it ideal for for use in broadband wireless, fiber optic communication and test equipment applications. The amplifier die occupies less than 3.6 mm² which facilitates easy integration into Multi-Chip-Modules (MCMs). The HMC-AUH232 requires external bias-tee as well as off-chip blocking components and bypass capacitors for the DC supply lines. A gate voltage adjust, Vg2 is provided for limited gain adjustment, while Vg1a adjusts the bias current for the device.

Electrical Specifications*, $T_A = +25$ °C

	Parameter	Min.	Тур.	Max.	Units
Frequency Range			DC - 43		GHz
Small Signal Gain	0.5 - 5.0 GHz	12	14		dB
	35 - 45 GHz	10	12.5		dB
Input Return Loss			10		dB
Output Return Loss			8.5		dB
Supply Current			180	225	mA
3 dB Bandwidth		43	46		GHz
Gain Ripple (5 to 35 GHz)			±0.6	±1	dB
	0.5 - 5.0 GHz		±14	±20	pS
Group Delay Variation ^[1]	5 - 30 GHz		±10	±11	pS
	30 - 45 GHz		±22	±25	pS

GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz

Electrical Specifications (Continued)*

Parameter		Min.	Тур.	Max.	Units
10% to 90% Rise / Fall Time[2]			6 - 12		pS
Output Voltage Level ^[3]			8		V _{p-p}
Additive jitter (RMS)			0.4		pS
1 dB Output Gain Compression Point at 20 GHz			16.5		dBm
Output Power	20 GHz @ Pin= 15 dBm ^[4]	22	22		dBm
	40 GHz @ Pin= 15 dBm ^[4]	17	19.5		dBm
Power Dissipation			0.9	1.25	W
	5 GHz		5.4		dB
10 & 15 GHz			4.2		dB
	20 GHz		4.6		dB
Noise Figure	25 GHz		5.4		dB
	30 GHz		8.3		dB
	35 GHz		7.4		dB
	40 GHz		9.1		dB

^[1] Measured with a 1 GHz aperture

[4] Verified at RF on-wafer probe. VG1 is adjusted until the drain current is 200 mA and VG2=1.5 V.The drain voltage is applied through the RF output port using a bias tee with 5 volts on the bias Tee.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
Positive Supply Voltage	V _D		5	6	V
Positive Supply Current	I _D	150	180	225	mA
RF Input Power			12	16	dBm
Bias Current Adjust	$V_{\rm G1A}$	-1.5	-0.2		V
Output Voltage Adjust	V _{G2}	0	1.5	2	V
Operating Temperature	T _{OP}	0	25	85	°C
Power Dissipation	P _D		0.9	1.25	W

Reliability Characteristics

Parameter	Symbol	Тур.	Units	
Activation Energy	E _A	1.7	eV	
Median time to Failure (MTF) @125 °C Channel Temperature	MTF	6 x 10 ⁹	Hours	

Thermal Characteristics

Parameter		T _{BASE}	Т _{сн}	R	MTF
. a.amotor	(W)	(°C)	(°C)	(°C/W)	(Hrs)
Thermal Resistance to back side of chip	1.25	85	145	48	5.8 x 10 ⁸
Thermal resistance to backside of carrier using 25.4 um of 84-1LMIT epoxy	1.25	85	155	56	1.8 x 10 ⁸
Thermal Resistance to back side of chip	1.25	110	170	48	3.9 x 10 ⁷
Thermal resistance to backside of carrier using 25.4 um of 84-1LMIT epoxy	1.25	110	180	56	1.4 x 10 ⁷

^[2] Measurement limited by rise/fall time of input reference signal

^[3] With a 2.7 V_{P-P} input signal

^{*}Unless otherwise indicated, all measurements are from probed die

WIDEBAND LOW NOISE AMPLIFIER, DC - 43 GHz

Gain vs. Frequency

Noise Figure vs. Frequency

Output Voltage Delta vs. Control Voltage

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency

Note: Measured Performance Characteristics (Typical Performance at 25°C) Vg2 = 1.5V, Vdd= 5V, Idd = 200 mA (Measured data obtained from die in a test fixture unless otherwise stated)

WIDEBAND LOW NOISE AMPLIFIER, DC - 43 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+6 Vdc
Gain Bias Voltage (Vg1a)	-1.5 to 0 Vdc
Output Voltage Adjust (Vg2)	0 to +2 Vdc
RF Input Power	+18.5 dBm
40 Gb/s Input Voltage Pk-Pk (Vpp)	3V
Thermal Resistance (channel to die bottom)	48 °C/W
Channel Temperature	180 °C
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +110 °C

Input Reference Signal

PRBS=231-1, 2.1V Input, Data rate of 40 Gb/s

Output Reference Signal

PRBS=231-1, 7.3V Input, Data rate of 40 Gb/s

Note: Measured Performance Characteristics (Typical Performance at 25°C) (Measured data obtained from die in a test fixture unless otherwise stated)

WIDEBAND LOW NOISE AMPLIFIER, DC - 43 GHz

Outline Drawing

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES [MM].
- 2. TYPICAL BOND PAD IS .004" SQUARE.
- 3. BACKSIDE METALLIZATION: GOLD
- 4. BACKSIDE METAL IS GROUND.
- 5. BOND PAD METALLIZATION: GOLD.
- 6. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.
- 7. OVERALL DIE SIZE ±.002"