Advanced Analog Circuits Data Sheet

LOW POWER QUAD OPERATIONAL AMPLIFIERS

AZ324

General Description

The AZ324 consists of four independent, high gain and internally frequency compensated operational amplifiers. It is specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages.

Features

- Internally frequency compensated
- Large voltage gain
- Low input bias current
- Low input offset voltage
- Large output voltage swing
- Wide power supply voltage range: Single supply 3V to 18V or dual supplies ± 1.5V to ± 9V
- Low supply current drain: 500μA
- Compatible with industry standard 324

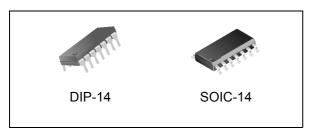


Figure 1. Package Types of AZ324

Applications

- Battery Charger
- · Cordless Telephone
- Switching Power Supply

Pin Configuration

M Package/P Package SOIC-14/DIP-14

Top View

Figure 2: Pin Configuration of AZ324

dvanced Analog Circuits Data Sheet

LOW POWER QUAD OPERATIONAL AMPLIFIERS

AZ324

Functional Block Diagram

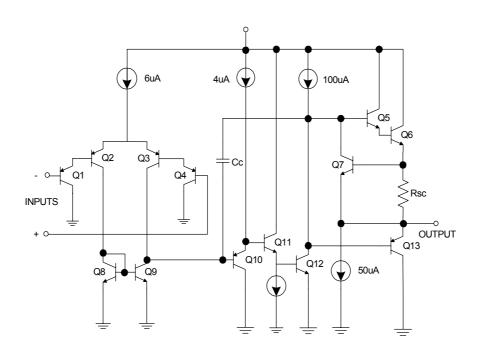


Figure 3. Functional Block Diagram of AZ324 (Each Amplifier)

Ordering Information

Package	Temperature Range	Part Number	Packing Type
SOIC-14	-40°C~85°C	AZ324M	Tube/Reel
DIP-14		AZ324P	Tube

Advanced Analog Circuits Data Sheet

LOW POWER QUAD OPERATIONAL AMPLIFIERS

AZ324

Absolute Maximum Ratings (Note 1)

(Operation temperature range applies unless otherwise specified.)

Parameter	Symbol	Value		Unit
Power Supply Voltage	V _{CC}	20		V
Differential Input Voltage	V _{ID}	20		V
Input Voltage	V _{IC}	-0.3 to 20		V
Input Current (V _{IN} <-0.3V) (Note 2)		50		mA
Output Short Circuit to Ground (One Amplifier) $V_{CC} \le 12V \text{ and } T_A = 25^{\circ}C \text{ (Note 3)}$		Continuous		
D	P _D	DIP	1130	
Power Dissipation		SOIC	800	mW
Operating Temperature Range	T _{OP}	-40 to 85		°C
Storage Temperature Range	T _{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10 Seconds)		260		°C
ESD (Machine Mode)		150		V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operation Ratings" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at $25^{\circ}C$)

Note 3: Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude of V_{CC} . At values of supply voltage in excess of +12V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Advanced Analog Circuits Data Sheet

AZ324

Electrical Characteristics

Operating Conditions: V_{CC}=+5V, GND=0V, T_A=25 °C unless otherwise specified.

LOW POWER QUAD OPERATIONAL AMPLIFIERS

Parameter		Symbol	Test Conditions		Min.	Тур.	Max.	Unit
Input Offset	Voltage	V_{IO}	V_O : 1.4V, RS: 0Ω , V_{CC} : from 5V to 15V			2	5	mV
Input Bias C (Note 4)	urrent	I_{BIAS}	$I_{\rm IN}$ + or $I_{\rm IN}$ -, $V_{\rm CM}$ =0V			20	200	nA
Input Offset	Current	I_{IO}	I _{IN} + or I _{IN} -, V _{CM} =0V			5	50	nA
Input Common Mode Voltage (Note 5)		V _{IR}	V _{CC} =15V		0		V _{CC} -1.5	V
Supply Current		I _{CC}	R_L = ∞ , Over full temperature range on all OP Amps	V _{CC} =15V		1	2	mA
				V _{CC} =5V		0.5	1.2	
Large Signal Voltage Gain			85	100		dB		
Common Mode Rejection Ratio		CMRR	DC, V _{CM} =0V to (V _{CC} -1.5)V		70	90		dB
Power Suppl Rejection Ra				70	90		dB	
Channel Separation (Note 6)		CS	f=1KHz to 20KHz (Input Referred)			-120		dB
Output Current	Source	I _{SOURCE}	V+=1V, V-=0V, V _{CC} =15V, V _O =2V		20	45		mA
	Sink	I _{SINK}	V-=1V, V+=0V, V _{CC} =15V, V _O =2V		10	15		mA
			V-=1V, V+=0V, V _{CC} =15V, V _O =200mV		12	50		uA
Short Circuit to Ground		I_{SC}	V _{CC} =15V			45	60	mA
Output Voltage Swing		V _{OH}	$R_L=2K\Omega$, $V_{CC}=15V$		12			V
			$R_L=10K\Omega$, $V_{CC}=15V$		12.5	13.5		
		V _{OL}	V_{CC} =5V, R_L =10K Ω			5	20	mV

Note 4: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25° C). The upper end of the common-mode voltage range is V_{CC} - 1.5V (at 25° C), but either or both inputs can go to +18V without damages, independent of the magnitude of the V_{CC} .

Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitors between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

AZ324

Typical Characteristics

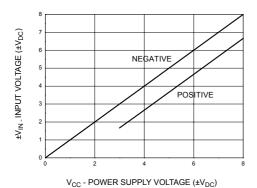


Figure 4. Input Voltage Range

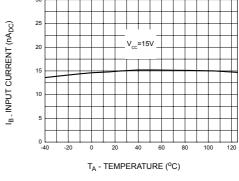


Figure 5. Input Current

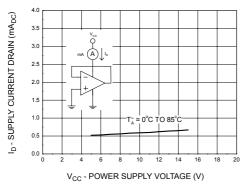


Figure 6. Supply Current

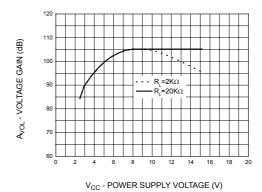


Figure 7. Voltage Gain

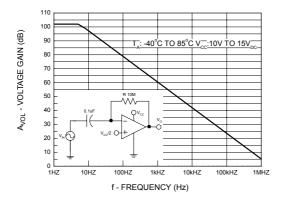


Figure 8. Open Loop Frequency Response

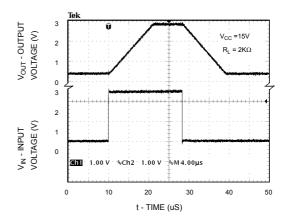


Figure 9. Voltage Follower Pulse Response

AZ324

LOW POWER QUAD OPERATIONAL AMPLIFIERS

Typical Characteristics (Continued)

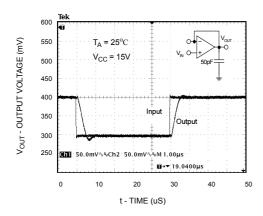


Figure 10. Voltage Follower Pulse Response (Small Signal)

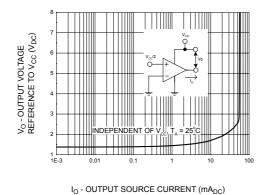
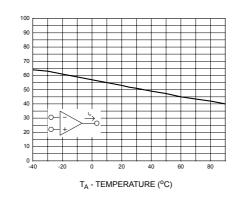



Figure 12. Output Characteristics Current Sourcing

IO - OUTPUT CURRENT (MADC)

Figure 14. Current Limiting

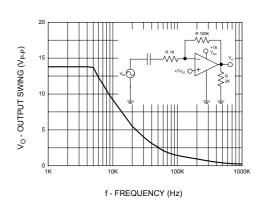


Figure 11. Large Signal Frequency Response

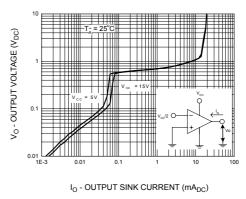


Figure 13. Output Characteristics Current Sinking

AZ324

Typical Applications

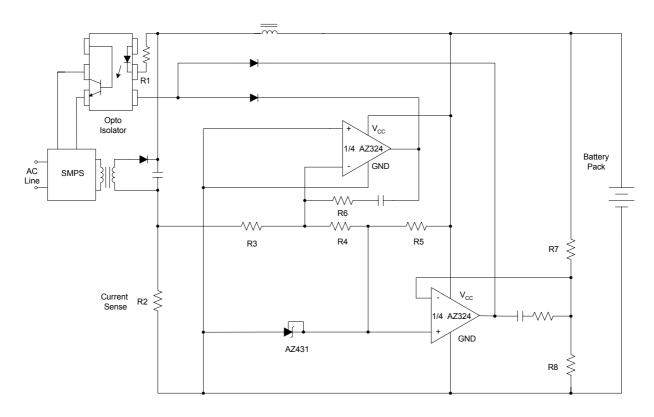


Figure 15. Battery Charger

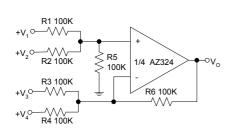


Figure 16. DC Summing Amplifier

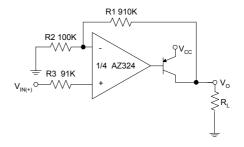


Figure 17. Power Amplifier

AZ324

Typical Applications (Continued)

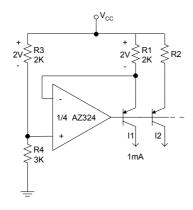


Figure 18. Fixed Current Sources

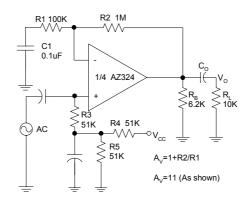


Figure 19. AC Coupled Non-Inverting Amplifier

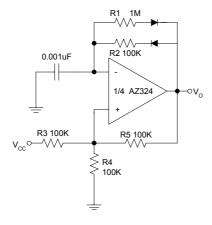
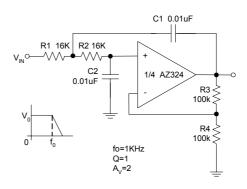
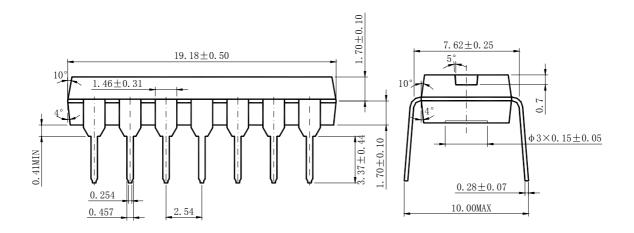
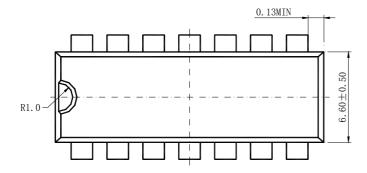


Figure 20. Pulse Generator



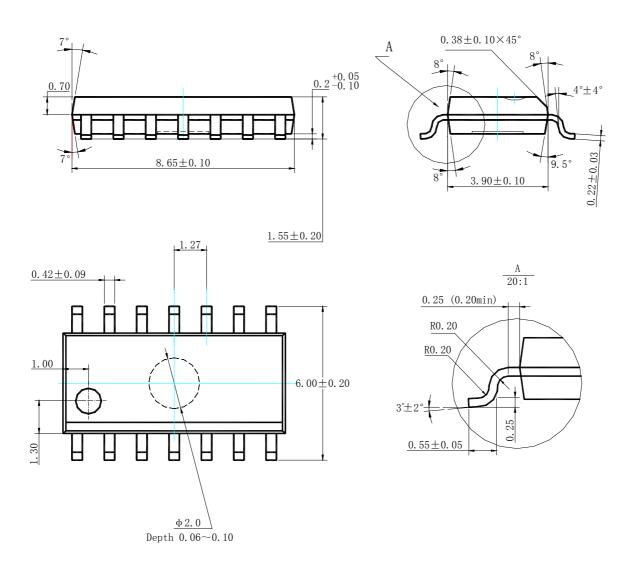

Figure 21. DC Coupled Low-Pass RC Active Filter



AZ324

Mechanical Dimensions

DIP-14



AZ324

Mechanical Dimensions (Continued)

SOIC-14

http://www.aacmicro.com

USA: 1510 Montague Expressway, San Jose, CA 95131, USA

China: 8th Floor, Zone B, 900 Yi Shan Road, Shanghai 200233, China

Taiwan: 8F, No.50, Lane10, Kee Hu Road, Nei Hu, TaiPei 114, Taiwan

Tel: 408-433-9888, Fax: 408-432-9888

Tel: 86-21-6495-9539, Fax: 86-21-6485-9673

Tel: 886-2-2657-8811, Fax: 886-2-2657-9090

IMPORTANT NOTICE

Advanced Analog Circuits Corporation reserves the right to make changes to its products or specifications at any time, without notice, to improve design or performance and to supply the best possible product. Advanced Analog Circuits does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Advanced Analog Circuits' products. The company makes no representation that circuitry described herein is free from patent infringement or other rights of Advanced Analog Circuits Corporation.