

Low Power Crystal Oscillator 32.768 kHz

Description

The EM1564 is a very low power crystal oscillator, which consists of a 32.768 kHz tuning fork crystal and an advanced CMOS circuit assembled in the same very small SMD ceramic package.

Very low power consumption, as low as 300nA, is guaranteed over a very wide supply voltage and temperature ranges.

The EM1564 is a completely lead free product.

Applications

- General purpose clock generator for digital systems
- Clock drivers for Real Time Clocks
- Timekeeping in network servers and computers
- Data logger
- Electricity, gas and water metering
- Portable field communication
- Mobile phone

Features

- All-in-one-package solution
- Miniature ceramic package for SMD mounting
- Package height 1.2mm
- Very low power consumption typ. 300nA
- Very tight frequency tolerance
- Excellent oscillator stability: 0.2 ppm/V
- Wide supply voltage range: 1.2V to 5.5V
- Operating temperature range: -40°C to +85°C
- On request extended temperature range: -40°C to +125°C
- Low aging
- High shock and vibration resistant
- 100% lead free, RoHS compliant

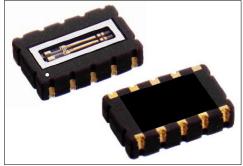


Fig. 1

Block Diagram

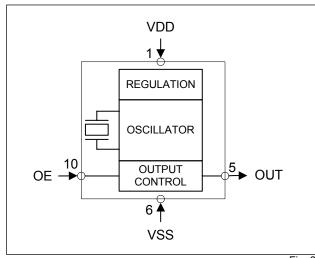
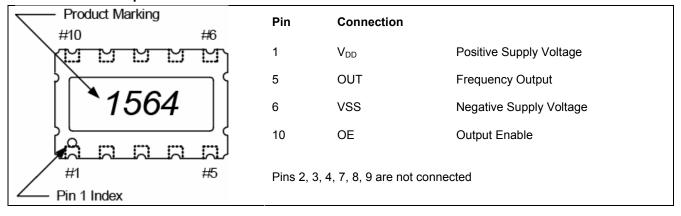



Fig. 2

Pin Connection Top View

Absolute Maximum Ratings

Parameter	Symbol	Conditions
Voltage at V _{DD} to V _{SS}	V_{DD}	-0.3V to +6V
Minimum voltage at OE	V_{MIN}	$V_{SS} - 0.3V$
Maximum voltage at OE	V_{MAX}	$V_{DD} + 0.3V$
Storage temperature range	T _{STG}	-55°C to +150°C
Maximum soldering	T _{Smax}	260°C x 20s

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Handling Procedures

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. Unused inputs must always be tied to a defined logic voltage level.

Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	1.2	5.5	V
Operating temperature	T_A	-40	+85	°C

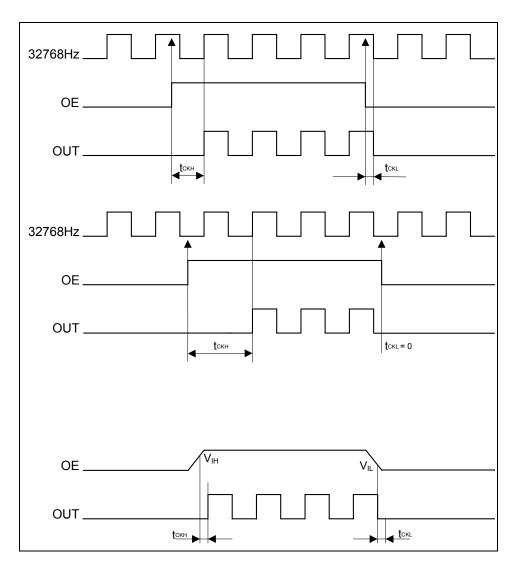
Electrical Characteristics

Unless otherwise specified: V_{DD}= 3.0V, V_{SS}= 0V, T_A=25°C

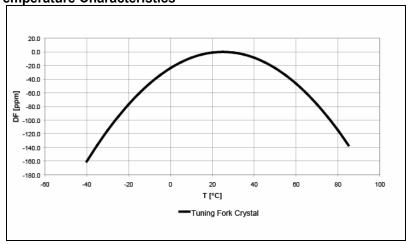
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply voltage range	V_{DD}		1.2	3.0	5.5	V
Current consumption	I _{DD1}	V_{DD} = 5.0V, OE at V_{SS}		300	550	nA
(Note1)		V_{DD} = 3.0V, OE at V_{SS}		250	500	nA
		V_{DD} = 2.0V, OE at V_{SS}		250	500	nA
		V_{DD} = 5.0V, OE at V_{SS}		750	1000	nA
		Top=-40 to +85°C				
		V _{DD} = 3.0V, OE at V _{SS}		650	900	nA
		Top=-40 to +85°C				
		V _{DD} = 2.0V, OE at V _{SS}		650	900	nA
		Top=-40 to +85°C				
Oscillator						
Start up voltage	VSTARTUP	t _{START} < 3s	1.2			V
Start up time	t _{STARTUP}			0.4	8.0	S
Frequency stability against	Δf/f *ΔV	$1.5 \le V_{DD} \le 5.5V$		0.2	2	ppm/V
supply voltage variations						
Input						
Input voltage	V_{IL}		V_{SS}		$0.2 \times V_{DD}$	V
	V_{IH}		$0.8 \times V_{DD}$		V_{DD}	V
Output						
Duty cycle			40	50	60	%
Output voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}, V_{DD} = 5.0 \text{V}$	V _{DD} -0.4	V _{DD} -0.1		V
	V_{OL}	$I_{OL} = 1.0 \text{ mA}, V_{DD} = 5.0 \text{V}$		0.14	0.4	V
Output rise time	Tr	C _L = 15pF				
		10%V _{DD} →90%V _{DD}		70	100	ns
Output fall time	T_f	C _L = 15pF				
		90%V _{DD} →10%V _{DD}		70	100	ns
Output frequency	f			32768		kHz
Frequency tolerance	Δf/f	(Note2)		±20		ppm
Aging first year max	Δf/f			±3		ppm
Frequency vs temperature	(Δf/f) /°C²			-0.035 ±10%		ppm/°C²

Note1: The current consumption when the output clock is enabled (OE pin at V_{DD}) is a function of the load capacitance on the OUT pin, the output frequency f_{OUT} = 32768Hz and the supply voltage V_{DD} .

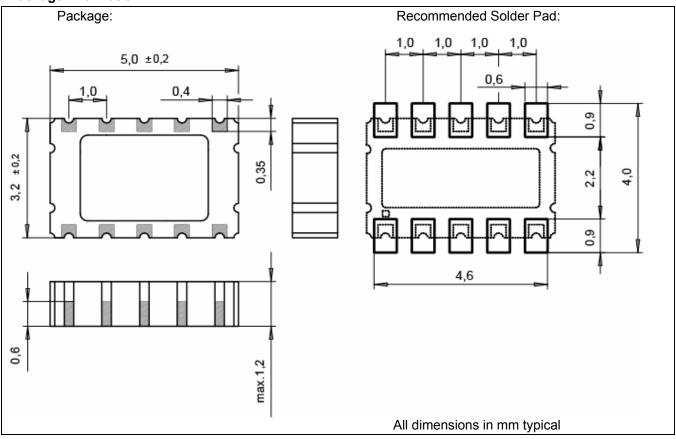
The additional consumption for a given load can be calculated from: $\Delta I_{DD} = C_{LOAD} \times V_{DD} \times f_{OUT}$


Note2: Tighter tolerances are available on request.

Environmental Characteristics


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Shock resistance	Δf/f	5000g, 0.3ms, ½sine			±5	ppm
Vibration resistance	Δf/f	20g / 10-2000Hz			±5	ppm

Timing Waveforms



Frequency Temperature Characteristics

Package Information:

The termination is with Au flashed pads for SMD mounting.

Ordering Information

The EM1564 can be delivered with different frequency tolerances and in different packages. Contact EM Microelectronic for availability of different options not shown in the table below.

Please make sure to write the exact Part Number when ordering.

Part Number	Version	Frequency Tolerance	Package Type	Top Marking	Delivery Form
EM1564V1SON10B+	V1	± 20 ppm (Note2)	SON -10	1464	7"(178mm) reel with 1'000 packages 10"(254mm)reel with 2'500 packages 13"(330mm)reel with 5'000 packages

Note2: Tighter tolerances are available on request.

EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site. EM assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of EM are granted in connection with the sale of EM products, expressly or by implications. EM's products are not authorized for use as components in life support devices or systems.

© EM Microelectronic-Marin SA, 02/06, Rev. A