

Marketing Bulletin

DATE: July 19th, 2006

TO: All Sales Personnel

FROM: Mark Stoner

RE: Product Termination

To all concerned parties,

This bulletin is to notify all customers of the discontinuation of the following Ecliptek series effective July 20th, 2006:

SeriesDescriptionRecommended ReplacementEC7UM-1 CrystalE1M or E5M

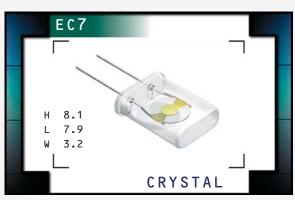
In compliance with our End of Life (EOL) policy, this will serve as advanced notice of product termination. New orders will not be accepted after September 31st, 2006, with delivery to conclude by December 31st 2006.

If there are any questions pertaining to this bulletin, please fell free to contact me. Thank you again for your cooperation.

Best Regards,

Mark W. Stoner

Vice President of Marketing


Mark W Somer

Ecliptek Corporation

ECLIPTEK® CORPORATION

- RoHS Compliant (Pb-Free)
- Inverted Mesa Crystal
- Fundamental mode frequencies to 212.5MHz
- UM-1 package
- AT cut
- Tight tolerance/stability
- Wide operating temperature range

NOTES

OBSOLETE

ELECTRICAL SPECIFICATIONS

Frequency Range	44.737MHz to 212.500MHz		
Frequency Tolerance / Stability	±50ppm/±100ppm,±30ppm/±50ppm		
Over Operating Temperature Range	±15ppm/±30ppm, or±10ppm/±30ppm		
Operating Temperature Range	0°C to 70°C, -20°C to 70°C, or -40°C to 85°C		
Aging (at 25°C)	±3ppm/year Maximum		
Storage Temperature Range	-40°C to 85°C		
Shunt Capacitance	5pF Maximum		
Drive Level	100μWatts Maximum		
Load Capacitance (C _L)	18pF (Standard), Custom C _L ≥ 10pF, or Series Resonant		
Motional Capacitance (C ₁)	3fF Min, 10fF Max ($F_0 \le 100$ MHz), 3fF Min, 13fF Max ($F_0 > 100$ MHz)		
Insulation Resistance	500 Megaohms Minimum at 100V _{DC}		

EQUIVALENT SERIES RESISTANCE (ESR), MODE OF OPERATION (MODE), AND CUT

Frequency Range	ESR (Ω)	Mode / Cut	Frequency Range	ESR (Ω)	Mode / Cut
44.737MHz to 50.000MHz	25 Max	Fundamental / AT	100.001MHz to 160.000MHz	35 Max	Fundamental / AT
50.001MHz to 100.000MHz	30 Max	Fundamental / AT	160.001MHz to 212.500MHz	40 Max	Fundamental / AT
MANUFACTURER FCLIPTEK CORP	CATEGORY	SERIES FC7	PACKAGE IIM-1	CLASS CR36	REV = DATE 03/06

PART NUMBERING GUIDE

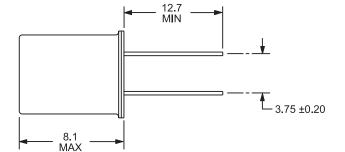
EC7 A - 20 - 35.000M

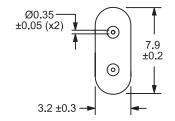
FREQUENCY TOLERANCE / STABILITY

$$\begin{split} & \text{Blank=} \pm 50 \text{ppm at } 25\,^{\circ}\text{C}, \pm 100 \text{ppm from } 0\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{A=} \pm 50 \text{ppm at } 25\,^{\circ}\text{C}, \pm 100 \text{ppm from } -20\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{B=} \pm 50 \text{ppm at } 25\,^{\circ}\text{C}, \pm 100 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{C=} \pm 30 \text{ppm at } 25\,^{\circ}\text{C}, \pm 50 \text{ppm from } 0\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{D=} \pm 30 \text{ppm at } 25\,^{\circ}\text{C}, \pm 50 \text{ppm from } -20\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{E=} \pm 30 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } 0\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{G=} \pm 15 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -20\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{H=} \pm 15 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{J=} \pm 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } 0\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{K=} \pm 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -20\,^{\circ}\text{C to } 70\,^{\circ}\text{C} \\ & \text{L=} \pm 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} \pm 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} \pm 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ & \text{L=} 10 \text{ppm at } 25\,^{\circ}\text{C}, \pm 30 \text{ppm from } -40\,^{\circ}\text{C to } 85\,^{\circ}\text{C} \\ &$$

FREQUENCY

LOAD CAPACITANCE


Blank=18pF (Standard) S=Series, XX=XXpF (Custom)


NOTES

OBSOLETE

MECHANICAL DIMENSIONS

ALL DIMENSIONS IN MILLIMETERS

ENVIRONMENTAL/MECHANICAL SPECIFICATIONS

PARAMETER SPECIFICATION

Seal Integrity Bubble test in Perfluorocarbon at +125 °C ± 5 °C for 60 seconds minimum.

Solderability Sn63 Solder dip at +230°C ±5°C for 5 seconds/95% coverage.

Marking Permanency 10 Strokes with brush after 1 minute soak in solvent, 3 times.

Shock Random drop on hard wooden plate 3 times from a height of 50cm.

Vibration Frequency with an amplitude of 1.5mm sweeping between 10Hz to 55Hz within 1 minute (approximately) for 2 hours minimum on each axis (X,Y

and Z) for a total of 6 hours.

MARKING SPECIFICATIONS

Line 1: ECLIPTEK

Line 2: XX.XXXM

Frequency in MHz (5 Digits Maximum + Decimal)

Line 3: XX

Ecliptek Manufacturing Identifier

MANUFACTURER CATEGORY SERIES PACKAGE CLASS REV.DATE
ECLIPTEK CORP. CRYSTAL EC7 UM-1 CR36 03/06