

512K x 32 x 4Banks Low Power SDRAM

Document Title

512K x 32 x 4Banks Low Power SDRAM Specification

Revision History

Revision No.	History	Draft Date	Remark
0.0	Initial Draft	Apr 7 , 2006	Draft
0.1	DC parameter values are changed	Jul 21 , 2006	Advanced
0.2	DC parameter values are changed. Wafer spec & PAD allocation are attached. PAD coordinates are not fixed (TBD). Special MRS mode (Wrap off) supported.	Sep 2 , 2006	Advanced
0.3	Pad allocation changed. (NC Pad added to right bottom)	Sep 21 , 2006	Advanced
0.4	Pad coordinates are updated.	Dec 6 , 2006	Advanced
0.5	Pad allocation changed. (BA0,BA1)	Dec 19 , 2006	Advanced
0.6	DC parameter values are revised.	Sep 10 , 2007	

Emerging Memory & Logic Solutions Inc.

4F Korea Construction Financial Cooperative B/D, 301-1 Yeon-Dong, Jeju-Si, Jeju-Do, Rep.of Korea Zip Code: 690-717 Tel: +82-64-740-1700 Fax: +82-64-740-1749~1750 / Homepage: www.emlsi.com

The attached datasheets are provided by EMLSI reserve the right to change the specifications and products. EMLSI will answer to your questions about device. If you have any questions, please contact the EMLSI office.

512K x 32 x 4Banks Low Power SDRAM

512K x 32Bit x 4 Banks Low Power SDRAM

FEATURES

- · 1.8V power supply.
- LVCMOS compatible with multiplexed address.
- · Four banks operation.
- MRS cycle with address key programs.
 - -. CAS latency (1, 2 & 3).
 - -. Burst length(1, 2, 4, 8 & Full page).
 - -. Burst type (Sequential & Interleave).
- · EMRS cycle with address key programs.
- All inputs are sampled at the positive going edge of the system clock.
- · Burst read single-bit write operation.
- · Special Function Support.
- -. PASR(Partial Array Self Refresh).
- -. Internal auto TCSR (Temperature Compensated Self Refresh)
- -. DS (Driver Strength)
- -. Deep power down
- · DQM for masking.
- · Auto refresh.
- · 64ms refresh period (4K cycle).

Extended Temperature Operation (-25 $^{\circ}$ ~ 85 $^{\circ}$)

GENERAL DESCRIPTION

The EMLS232UA series is 67,108,864 bits synchronous high data rate Dynamic RAM organized as $4 \times 534,288$ words by 32 bits, fabricated with Ramsway's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock and I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the same device to be useful for a variety of high bandwidth and high performance memory system applications.

ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
EMLS232UAW-6(E)	133版(CL3), 100版(CL2)	LVCMOS	Wafer Biz.

- 1. In case of 40Mb Frequency, CL1 can be supported.
- 2. Ramsway are not designed or manufactured for use in a device or system that is used under circumstance in which human life is potentially at stake. Please contact to the memory marketing team in ramsway when considering the use of a product contained herein for any specific purpose, such as medical, aerospace, nuclear, military, vehicular or undersea repeater use.

512K x 32 x 4Banks Low Power SDRAM

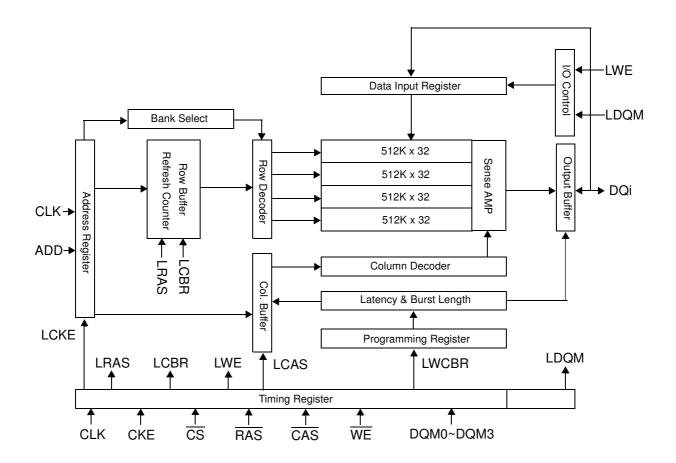
General Wafer Specifications

• Process Technology: 0.125um Trench DRAM Process

• Wafer thickness : 725 +/- 25um

• Typical Pad Open Size: 70.2um x 70.2um

Minimum Pad Pitch: 93.6umWafer Diameter: 8-inch



512K x 32 x 4Banks Low Power SDRAM

PAD FUNCTION DESCRIPTION

Pad	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
<u>cs</u>	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM
CKE	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby.
A ₀ ~ A ₁₀	Address	Row/column addresses are multiplexed on the same pins. Row address : RA $_0$ ~ RA $_{10}$, Column address : CA $_0$ ~ CA $_7$
BA₀ ~ BA₁	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row address strobe	Latches row addresses on the positive going edge of the CLK with RAS low. Enables row access & precharge.
CAS	Column address strobe	Latches column addresses on the positive going edge of the CLK with CAS low. Enables column access.
WE	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQM0~DQM3	Data input/output mask	Makes data output Hi-Z, t _{SHZ} after the clock and masks the output. Blocks data input when DQM active.
DQ _{0 ~ n}	Data input/output	Data inputs/outputs are multiplexed on the same pins.: DQ _{0 ~ 31}
V _{DD} /V _{SS}	Power supply/ground	Power and ground for the input buffers and the core logic.
V _{DDQ} /V _{SSQ}	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity
N.C/RFU	No connection /reserved for future use	This pin is recommended to be left No Connection on the device.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{SS}	V _{IN} ,V _{OUT}	-1.0 ~ 2.6	V
Voltage on V _{DD} supply relative to V _{SS}	V_{DD}, V_{DDQ}	-1.0 ~ 2.6	V
Storage temperature	T _{STG}	-55 ~ +150	${\mathbb C}$
Power dissipation	P _D	1.0	W
Short circuit current	I _{OS}	50	mA

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to $V_{SS} = 0V$, $T_A = -25^{\circ}C^{\sim} 85^{\circ}C$ for Extended, $0^{\circ}C^{\sim} 70^{\circ}C$ for Commercial)

Parameter	Parameter Symbol N		Тур	Max	Unit	Note
Supply voltage	V_{DD}	1.7	1.8	1.95	V	1
Supply voltage	V_{DDQ}	1.7	1.8	1.95	V	1
Input logic high voltage	V _{IH}	0.8 x V _{DDQ}	1.8	V _{DDQ} + 0.3	V	2
Input logic low voltage	V _{IL}	-0.3	0	0.3	V	3
Output logic high voltage	V _{OH}	0.9 x V _{DDQ}	-	-	V	I _{OH} = -0.1 mA
Output logic low voltage	V _{OL}	-	-	0.2	V	$I_{OL} = 0.1 \text{mA}$
Input leakage current	I _{LI}	-2	-	2	μA	4

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.

CAPACITANCE

Pin	Symbol	Min	Max	Unit	Note
Clock	C _{CLK}	1.5	3.5	pF	
RAS, CAS, WE, CS, CKE, DQM0~DQM3	C _{IN}	1.5	3.0	pF	
Address	C _{ADD}	1.5	3.0	pF	
DQ ₀ ~ DQ ₃₁	C _{OUT}	2.0	4.5	pF	

^{1.} Under all conditions V_{DDQ} must be less than or equal to V_{DD} .

 $^{2.}V_{IH}$ (max) = 2.2V AC. The overshoot voltage duration is $\leq 3 \text{ ns}$

 $^{3.}V_{IL}$ (min) = -1.0V AC. The undershoot voltage duration is $\leq 3 \, \mathrm{ns}$.

^{4.}Any input 0V \leq V_{IN} \leq V_{DDQ}.

^{5.} Dout is disabled, $0V \le V_{OUT} \le V_{DDQ}$.

DC CHARACTERISRICS

Recommended operating conditions (Voltage referenced to $V_{SS} = 0V$, $T_A = 0^{o}C \sim 70^{o}C$ for Extended, -25°C ~ 85°C for Commercial)

Parameter	Symbol	Test Conditio	n		Vers	sion		Unit	Note
Parameter	Symbol	rest Conditio	П		133	MHz			Note
Operating Current (One Bank Active)	I _{CC1}	Active mode; Burst length = 2; Re $t_{RC} \ge t_{RC}(min)$; CL=3; t_{CC} =10 ns t_{O} = 0 mA					mA	1	
Precharge Standby Cur-	I _{CC2} P	$CKE \le V_{IL}(max), t_{CC}=10 ns$		0.15					
rent in power-down mode	I _{CC2} PS	CKE & CLK \leq V _{IL} (max), t _{CC} = ∞		0.15				mA	
Precharge Standby Cur-	I _{CC2} N	$\label{eq:cke} \begin{split} \text{CKE} &\geq \text{V}_{IH}(\text{min}), \overline{\text{CS}} \geq \text{V}_{IH}(\text{min}), \\ \text{Input signals are changed one tim} \end{split}$		15					
mode	rent in non power-down				2	2		mA	
Active Standby Current	I _{CC3} P	$CKE \le V_{IL}(max), t_{CC} = 10 ns$		0.5					
in power-down mode	I _{CC3} PS	CKE & CLK \leq V _{IL} (max), t _{CC} = ∞		0.5				mA	
Active Standby Current in non power-down	I _{CC3} N	$\label{eq:cke} \begin{split} \text{CKE} &\geq \text{V}_{IH}(\text{min}), \overline{\text{CS}} \geq \text{V}_{IH}(\text{min}), \\ \text{Input signals are changed one time.} \end{split}$		20				mA	
mode (One Bank Active)	I _{CC3} NS	$\label{eq:cke} \begin{split} \text{CKE} &\geq \text{V}_{IH}(\text{min}), \text{CLK} \leq \text{V}_{IL}(\text{max}) \\ \text{Input signals are stable} \end{split}$	t), $t_{CC} = \infty$	10					
Operating Current (Burst Mode)	I _{CC} 4	I _O = 0mA Page burst, CL=3, Read or Write, 4Banks Activated	t _{CC} = 10 ns		7	5		mA	1
Refresh Current	I _{CC} 5	$t_{ARFC} \ge t_{ARFC}(min), t_{CC} = 10 \text{ ns}$			8	0		mA	2
			Internal Auto TCSR	Max 15	Max 45	Max 70	Max 85	С	
Self Refresh Current	I _{CC} 6	CKE ≤ 0.2V	4 Banks	210	220	230	250		
			2 Banks	160	170	180	190	μA	
	1 Bank	130 135 140 150							
Deep Power Down mode current	I _{CC} 7				1	0		μΑ	

- 1.Measured with outputs open.
- 2.Refresh period is 64ms.
- 3.Unless otherwise noted, input swing level is CMOS(V $_{IH}$ /V $_{IL}$ =V $_{DDQ}$ /V $_{SSQ}$).

EMLS232UA Series

AC OPERATING TEST CONDITIONS

(V_{DD} = 1.7V ~ 1.95V, T_A = 0 $^{\circ}\mathrm{C}~\sim70\,^{\circ}\mathrm{C}$ for Commercial, -25 $^{\circ}\mathrm{C}~\sim85\,^{\circ}\mathrm{C}$ for Extendedl)

Parameter	Value	Unit		
AC input levels(Vih/Vil)	$0.9 imes V_{ m DDQ}$ / 0.2	V		
Input timing measurement reference level	$0.5 imes V_{ m DDQ}$	V		
Input rise and fall time	tr/tf = 1/1	ns		
Output timing measurement reference level	$0.5 imes V_{ m DDQ}$	V		
Output load condition	See Figure 2			

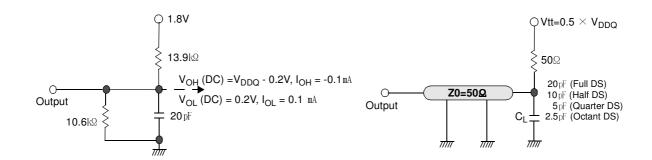


Figure 1. DC Output Load Circuit

Figure 2. AC Output Load Circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol	Value	Unit	Note
Row active to row active delay		t _{RRD} (min)	min) 15		1
RAS to CAS delay		t _{RCD} (min)	22.5	ns	1
Row precharge time		t _{RP} (min)	22.5	ns	1
Row active time		t _{RAS} (min)	45	ns	1
now active time		t _{RAS} (max)	70,000	ns	
Row cycle time		t _{RC} (min)	67.5	ns	1
Last data in to row precharge		t _{RDL} (min)	15	ns	2
Last data in to Active delay		t _{DAL} (min)	t _{RDL} + t _{RP}	-	
Last data in to new col. address dela	/	t _{CDL} (min)	1	CLK	2
Last data in to burst stop		t _{BDL} (min)	1	CLK	2
Auto refresh cycle time		t _{ARFC} (min)	80	ns	3
Exit self refresh to active command		t _{SRFX} (min)	SRFX(min) 120		
Col. address to col. address delay		t _{CCD} (min)	t _{CCD} (min) 1		4
Number of valid output data CAS la		tency=3 2			
Number of valid output data CAS la		atency=2	1	ea	5
Number of valid output data	CAS I	atency=1	-		

^{1.} The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.

2. Minimum dealy is required to complete write.

^{3.} Maximum burst refresh cycle: 8
4. All parts allow every cycle column address change.
5. In case of row precharge interrupt, auto precharge and read burst stop.

AC CHARACTERISTICS

(AC operating conditions unless otherwise noted)

Paramete		Symbol	Va	Umit	Note	
Paramete	er ·	Symbol	Min	Max	Unit	Note
	CAS latency=3	t _{CC}	7.5			
CLK cycle time	CAS latency=2	t _{CC}	10	1000	ns	1
	CAS latency=1	t _{CC}	-		00 ns 6 7 ns 7 ns ns ns ns ns ns	
	CAS latency=3	t _{AC}		6		
CLK to valid output delay	CAS latency=2	t _{AC}		7	ns	1,2,3
	CAS latency=1	t _{AC}		-		
	CAS latency=3	t _{OH}	2.5			
Output data hold time	CAS latency=2	t _{OH}	2.5		ns	2
	CAS latency=1	t _{OH}	-			
CLK high pulse width		t _{CH}	2.5		ns	4
CLK low pulse width		t _{CL}	2.5		ns	4
Input setup time		t _{SS}	2.0		ns	4
Input hold time		t _{SH}	1		ns	4
CLK to output in Low-Z		t _{SLZ}	1		ns	2
	CAS latency=3			6		
CLK to output in Hi-Z	CAS latency=2	t _{SHZ}		7	ns	
	CAS latency=1			-		

NOTE:

- 1. Parameters depend on programmed CAS latency.
 2. If clock rising time is longer than 1 ns, (tr/2-0.5)ns should be added to the parameter.
 3. t_{AC}(max) value is measured at the low Vdd(1.7V) and cold temperature(-25°C).

 t_{AC} is measured in the device with half driver strength(C_L =10pF) and under the AC output load condition.

- 4. Assumed input rise and fall time (tr & tf) = 1 ns.
 - If tr & tf is longer than 1 ns, transient time compensation should be considered,
 - i.e., [(tr + tf)/2-1]ns should be added to the parameter.

SIMPLIFIED TRUTH TABLE

	COMMAND		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	BA0, 1	A10/AP	A9 ~ A0	Note							
Register	Mode Regis	ster Set	Н	Х	L	L	L	L	Х		OP CODE		1, 2							
	Auto Refres	sh	н	Н	L	L	L	Н	х		Х		3							
Refresh		Entry	1 "	L	L	L	L	Н	X		3									
Refresh	Self Refresh	Exit			L	Н	Н	Н	Х		Х		3							
		EXIT	L	Н	Н	Х	Х	Х	×		X		3							
Bank Active	e & Row Addr.		Н	Х	L	L	Н	Н	Х	V	Row A	ddress								
Read &	Auto Precha	arge Disable		V					Х	V	L	Column	4							
Column Address	Auto Precha	arge Enable	Н	X	L	Н	L	Н	''	"	П		^	V	V	Н	Address (A0~A7)	4, 5		
Write &	Auto Precha	arge Disable	- 11	V					V	V	L	Column	4							
Column Address	Auto Precha	arge Enable	H	X	L	Н	L	L		L	L		L	L	X	V	V	Н	Address (A0~A7)	4, 5
Burst Stop			Н	Х	L	Н	Н	L	Х		Х		6							
Pre-	Pre- Bank Selection		— н	Х	L	L	Н	L	Х	V	L	Х								
charge	All Banks			^	_	_	П		^	Х	Н	^								
		Cata		L	Н	Х	Х	Х	Х											
Clock Susp Active Pow		Entry	Н	L	L	٧	٧	٧	^		X									
		Exit	L	Н	Х	Х	Х	Х	Х											
Precharge	Power	Entry	Н	L	Н	Х	Х	х	Х											
Down Mode					Н	Х	Х	Х			Х									
		Exit	L	Н	L	V	٧	٧	Х											
David David	Entry		Н	L	L	Н	Н	L	Х											
Deep Power Down		Exit	L									Н	Х	Х	Х	· ·		Х		
				Н	L	٧	٧	٧	Х											
DQM	DQM		Н			Х			٧		Х		7							
Na Osas "	0			v	Н	Х	Х	Х	v		V									
No Operation	on Command		Н	X	L	Н	Н	Н	Х	X										

(V=Valid, X =Don't care, H=Logic High, L=Logic Low)

- 1. OP Code : Operand Code A0 ~ A10 & BA0 ~ BA1 : Program keys. (@MRS)
- 2. MRS can be issued only at all banks precharge state. A new command can be issued after 2 CLK cycles of MRS
- 3. Auto refresh functions are the same as CBR refresh of DRAM.

- The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state. Partial self refresh can be issued only after setting partial self refresh mode of EMRS.
- 4. BA0 ~BA1 : Bank select addresses.
- 5. During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst.
- New row active of the associated bank can be issued at $t_{\mbox{\scriptsize RP}}$ after the end of burst. 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at the positive going edge of CLK masks the data-in at that same CLK in write operation (Write DQM latency is 0), but in read operation, it makes the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2).

A. MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with Normal MRS

Address	BA0 ~ BA1	A10/AP*1	A9*3	A8	A7	A6	A 5	A 4	А3	A2	A 1	A0
Function	" 0 " Setting for Normal MRS	Wrap Mode 0: Wrap on 1: Wrap off	W.B.L	Test I	Mode	CA	\S Later	псу	ВТ	E	Burst Lenç	gth

Normal MRS Mode

	7	est Mode	CAS Latency					Burst Length						
A8	A 7	Туре	A6	A 5	A4	Latency	А3	Туре		A2	A 1	A 0	BT=0	BT=1
0	0	Mode Register Set	0	0	0	Reserved	0	Sequential		0	0	0	1	1
0	1	Reserved	0	0	1	1	1	Inte	erleave	0	0	1	2	2
1	0	Reserved	0	1	0	2	ı	Mode Select			1	0	4	4
1	1	Reserved	0	1	1	3	BA1	BA0	Mode	0	1	1	8	8
	Write	Burst Length	1	0	0	Reserved			setting for Nor-	1	0	0	Reserved	Reserved
A9		Length	1	0	1	Reserved	0	0		1	0	1	Reserved	Reserved
0	Burst		1	1	0	Reserved		U	mal MRS	1	1	0	Reserved	Reserved
1		Single Bit 1 1 1 Reserved			1	1	1	Full Page	Reserved					

Full Page Length x32 : 64Mb(256)

Register Programmed with Extended MRS

Address	BA1	BA0	A10/AP	A9	A9 A8		A6	A6 A5		А3	A2	A 1	Α0
Function	Mode	RFU ^{*2}			D	S	RF	U*2		PASR			

EMRS for PASR(Partial Array Self Ref.) & DS(Driver Strength)

			Driver Strength					PASR					
BA1	BA0	MODE			A 6	A 5	Driv	er Strength	A2	A 1	A0	Size of Refreshed Array	
0	0	Normal MRS			0	0		Full	0 0		0	Full Banks (default)	
0	1	Reserved			0	1	1/3	2 (default)	0	0	1	Two Banks (Bank 0,1)	
1	0	EMRS for Low Power SDRAM			1	0		1/4	0	1	0	One Bank (Bank 0)	
1	1	R	leserved		1	1		1/8	0	1	1	Reserved	
			Reserved	Addres	ss				1	0	0	Reserved	
A10)/AP	A 9	A8	Δ	17	А	4	А3	1	0	1	Reserved	
	0	0	0		0		1			1	0	Reserved	
	U	3	3	'	U		,	0	1	1	1	Reserved	

- 1. If A10/AP is high during MRS cycle, "Wrap off mode" function will be enabled. This mode support only sequential burst type.
 2. RFU(Reserved for future use) should stay "0" during MRS cycle.
 3. If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.

Partial Array Self Refresh

1. In order to save power consumption, Low Power SDRAM has PASR option.
2. Low Power SDRAM supports 3 kinds of PASR in self refresh mode: Four banks, Two banks and One bank.

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

BA1=0 **BA1=0** BA0=0 BA0=1 **BA1=1** BA1=1 BA0=0 BA0=1

- Four Banks

- Two Banks (Bank0,1)

- One Bank (Bank0)

Partial Self Refresh Area

Internal Temperature Compensated Self Refresh (TCSR) NOTE:

- 1. In order to save power consumption, Low power SDRAM includes the internal temperature sensor and control units to control the self refresh cycle automatically according to the two temperature range : Max 85° , Max 70° , Max 45° , Max 15°
- 2. If the EMRS for exteranl TCSR is issued by the controller, this EMRS code for TCRS is ignored.
- 3. It has \pm -5 $^{\circ}$ C tolerance.

Temperature Range	5	Unit				
remperature hange	Full Array	1/4 of Full Array				
Max 85℃	250	190	150			
Max 70℃	230	180	140			
Max. 45 °C ³	220	170	135	μA		
Max 15℃	210	160	130			

B. POWER UP SEQUENCE

- 1. Apply power and attempt to maintain CKE at a high state and all other inputs may be undefined. -Apply V_{DD} before or at the same time as V_{DDQ}.
- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200 μs .
- 3. Issue precharge commands for all banks of the devices.
- 4. Issue 2 or more auto-refresh commands.
- 5. Issue a mode register set command to initialize the mode register.
- 6. Issue a extended mode register set command to define DS or PASR operating type of the device after normal MRS.

EMRS cycle is not mandatory and the EMRS command needs to be issued only when DS or PASR is used. The default state without EMRS command issued is half driver strength and full array refreshed.

The device is now ready for the operation selected by EMRS.
For operating with DS or PASR, set DS or PASR mode in EMRS setting stage.

In order to adjust another mode in the state of DS or PASR mode, additional EMRS set is required but power up sequence is not needed again at this time. In that case, all banks have to be in idle state prior to adjusting EMRS set.

C. BURST SEQUENCE (Wrap on mode)

1. BURST LENGTH = 4

Initial A	Address		Sogu	ential		Interleave					
A 1	A0		Sequ	Cillai							
0	0	0	1	2	3	0	1	2	3		
0	1	1	2	3	0	1	0	3	2		
1	0	2	3	0	1	2	3	0	1		
1	1	3	0	1	2	3	2	1	0		

2. BURST LENGTH = 8

Initi	al Add	ress				Comu	ontial				Interleave							
A2	A 1	Α0				Sequ	entiai			interleave								
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0