SPECIFICATIONS FOR NICHIA UV LED

MODEL: NSHU550B

NICHIA CORPORATION

(Ta=25°C)

1.SPECIFICATIONS

(1) Absolute Maximum Ratings			(Ta=25°C)
	Item	Symbol	Absolute Maximum Rating	Unit
	Forward Current	IF	25	mA
	Pulse Forward Current	IFP	80	mA
	Allowable Reverse Current	Ir	85	mA
	Power Dissipation	Pd	100	mW
	Operating Temperature	Topr	-30 ~ + 85	°C
	Storage Temperature	Tstg	-40 ~ +100	°C
	Soldering Temperature	Tsld	265°C for 10sec.	

IFP Conditions : Pulse Width ≤ 10 msec. and Duty $\leq 1/10$

(2) Initial Electrical/Optical Characteristics

Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage		VF	IF=20[mA]	-	3.6	4.0	V
Peak Wavelength Rank Ua		λρ	IF=20[mA]	360	365	370	nm
Spectrum Half Width		$ riangle \lambda$	IF=20[mA]	-	10	-	nm
	Rank 3	Po	IF=20[mA]	1200	1400	1700	μW
Optical Power Output	Rank 4	Po	IF=20[mA]	1700	2000	2400	μW
	Rank 5	Po	IF=20[mA]	2400	2800	3400	μW

* Optical Power Output Measurement allowance is $\pm 10\%$.

****** Peak Wavelength Measurement allowance is ±3nm.

*** One delivery will include up to three different ranks of the products. The quantity-ratio of the three ranks is decided by Nichia.

2.TYPICAL INITIAL OPTICAL/ELECTRICAL CHARACTERISTICS Please refer to figure's page.

3.OUTLINE DIMENSIONS AND MATERIALS

Please refer to figure's page.

Material as follows	;
---------------------	---

Glass	:	Hard Glass	
Cap	:	Ni Plating	Iron Alloy
Lead	:	Au Plating	Iron Alloy

4.PACKAGING

 \cdot The LEDs are packed in cardboard boxes after packaging in anti-electrostatic bags. Please refer to figure's page.

The label on the minimum packing unit shows ; Part Number, Lot Number, Ranking, Quantity

 \cdot In order to protect the LEDs from mechanical shock, we pack them in cardboard boxes for transportation.

- The LEDs may be damaged if the boxes are dropped or receive a strong impact against them, so precautions must be taken to prevent any damage.
- \cdot The boxes are not water resistant and therefore must be kept away from water and moisture.
- · When the LEDs are transported, we recommend that you use the same packing method as Nichia.

5.LOT NUMBER

The first six digits number shows **lot number**.

The lot number is composed of the following characters;

 $\bigcirc \Box \times \times \times \times \cdot \bigtriangleup \blacksquare$

○ - Year (3 for 2003, 4 for 2004)

- \Box Month (1 for Jan., 9 for Sep., A for Oct., B for Nov.)
- $\times \times \times \times$ Nichia's Product Number
 - \triangle Ranking by Wavelength
 - Ranking by Optical Power Output

6.RELIABILITY (1) TEST ITEMS AND RESULTS

	Standard			Number of
Test Item	Test Method	Test Conditions	Note	Damaged
Resistance to	JEITA ED-4701	Tsld= $260 \pm 5^{\circ}$ C, 10sec.	1 time	0/100
Soldering Heat	300 302	3mm from the base of the lead		
Solderability	JEITA ED-4701	Tsld= $235 \pm 5^{\circ}$ C, 5sec.	1 time	0/100
	300 303	(using flux)	over 95%	
Thermal Shock	JEITA ED-4701	0°C ~ 100°C	100 cycles	0/100
	300 307	15sec. 15sec.		
Temperature Cycle	JEITA ED-4701	$-40^{\circ}C \sim 25^{\circ}C \sim 100^{\circ}C \sim 25^{\circ}C$	100 cycles	0/100
	100 105	30min. 5min. 30min. 5min.		
Moisture Resistance Cyclic	JEITA ED-4701	$25^{\circ}\text{C} \sim 65^{\circ}\text{C} \sim -10^{\circ}\text{C}$	10 cycles	0/100
	200 203	90%RH 24hrs./1cycle		
Terminal Strength	JEITA ED-4701	Load 5N (0.5kgf)	Nonoticeable	0/100
(bending test)	400 401	$0^{\circ} \sim 90^{\circ} \sim 0^{\circ}$ bend 2 times	damage	
Terminal Strength	JEITA ED-4701	Load 10N (1kgf)	Nonoticeable	0/100
(pull test)	400 401	10 ± 1 sec.	damage	
High Temperature Storage	JEITA ED-4701	Ta=100°C	1000hrs.	0/100
	200 201			
Temperature Humidity	JEITA ED-4701	Ta=60°C, RH=90%	1000hrs.	0/100
Storage	100 103			
Low Temperature Storage	JEITA ED-4701	Ta=-40°C	1000hrs.	0/100
	200 202			
Steady State Operating Life		Ta=25°C, IF=25mA	500hrs.	0/100
Steady State Operating Life		60°C, RH=90%, IF=15mA	500hrs.	0/100
of High Humidity Heat				
Steady State Operating Life		Ta=-30°C, IF=20mA	1000hrs.	0/100
of Low Temperature				

(2) CRITERIA FOR JUDGING THE DAMAGE

			Criteria for Judgement		
Item	Symbol	Test Conditions	Min.	Max.	
Forward Voltage	VF	IF=20mA	-	U.S.L.*)× 1.1	
Optical Power Output	Ро	IF=20mA	L.S.L.**)× 0.7	-	

*) U.S.L. : Upper Standard Level **) L.S.L. : Lower Standard Level

7.CAUTIONS

(1) Cautions

• The devices are UV light LEDs. The LED during operation radiates intense UV light, which precautions must be taken to prevent looking directly at the UV light with unaided eyes. Do not look directly into the UV light or look through the optical system. When there is a possibility to receive the reflection of light, protect by using the UV light protective glasses so that light should not catch one's eye directly.

 \cdot Put the caution label on the cardboard box.

(2) Lead Forming

- When forming leads, the leads should be bent at a point at least 3mm from the base of the lead. Do not use the base of the leadframe as a fulcrum during lead forming.
- \cdot Lead forming should be done before soldering.
- \cdot Do not apply any bending stress to the base of the lead. The stress to the base may damage the LED's characteristics or it may break the LEDs.
- When mounting the LEDs onto a printed circuit board, the holes on the circuit board should be exactly aligned with the leads of the LEDs. If the LEDs are mounted with stress at the leads, it causes deterioration of the lead and this will degrade the LEDs.
- (3) Storage
 - The LEDs should be stored at 30°C or less and 70%RH or less after being shipped from Nichia and the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material.
 - Nichia LED leads are comprised of a gold plated Iron alloy. The gold surface may be affected by environments which contain corrosive gases and so on. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the LEDs be used as soon as possible.
- Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur.

(4) Static Electricity

- \cdot Static electricity or surge voltage damages the LEDs.
- It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
- All devices, equipment and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts LEDs.
- When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by a light-on test or a VF test at a lower current (below 1mA is recommended). The LEDs should be used the light detector etc. when testing the light-on. Do not stare into the LEDs when testing.
- Damaged LEDs will show some unusual characteristics such as the forward voltage becomes lower, or the LEDs do not light at the low current.

Criteria : (VF > 2.0V at IF=0.5mA)

(5) Soldering Conditions

 \cdot Solder the LED no closer than 3mm from the base of the lead.

· Recommended soldering conditions

Dip Soldering		Hand Soldering		
Pre-Heat	120°C Max.	Temperature	350°C Max.	
Pre-Heat Time	60 seconds Max.	Soldering Time	3 seconds Max.	
Solder Bath	260°C Max.	Position	No closer than 3 mm from the	
Temperature			base of the lead.	
Dipping Time	10 seconds Max.			
Dipping Position	No lower than 3 mm from the			
	base of the lead.			

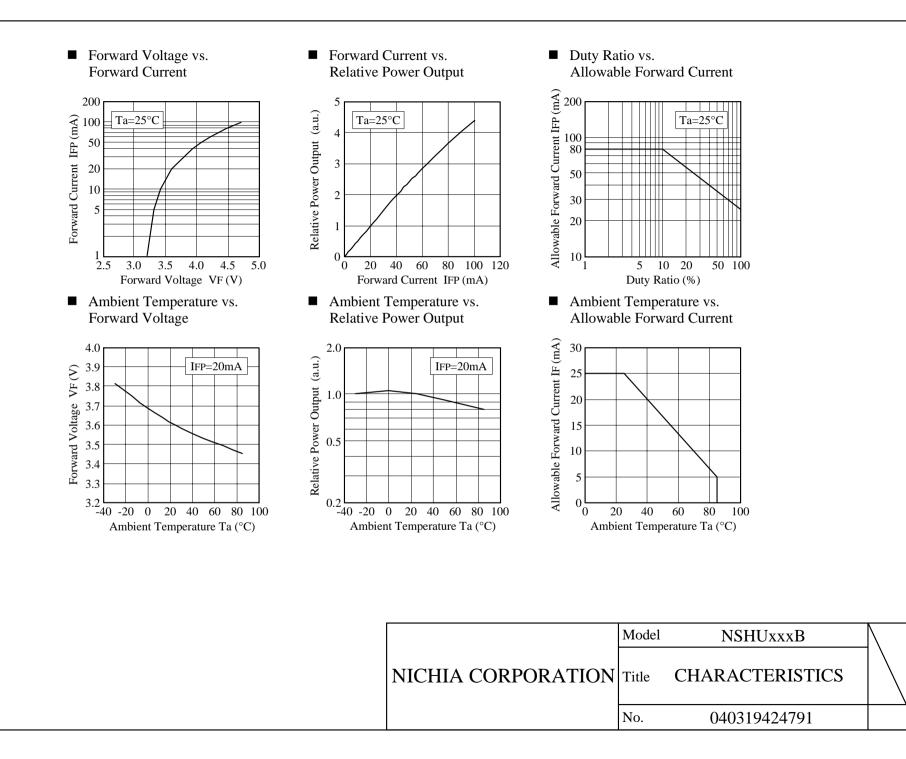
• Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the LEDs.

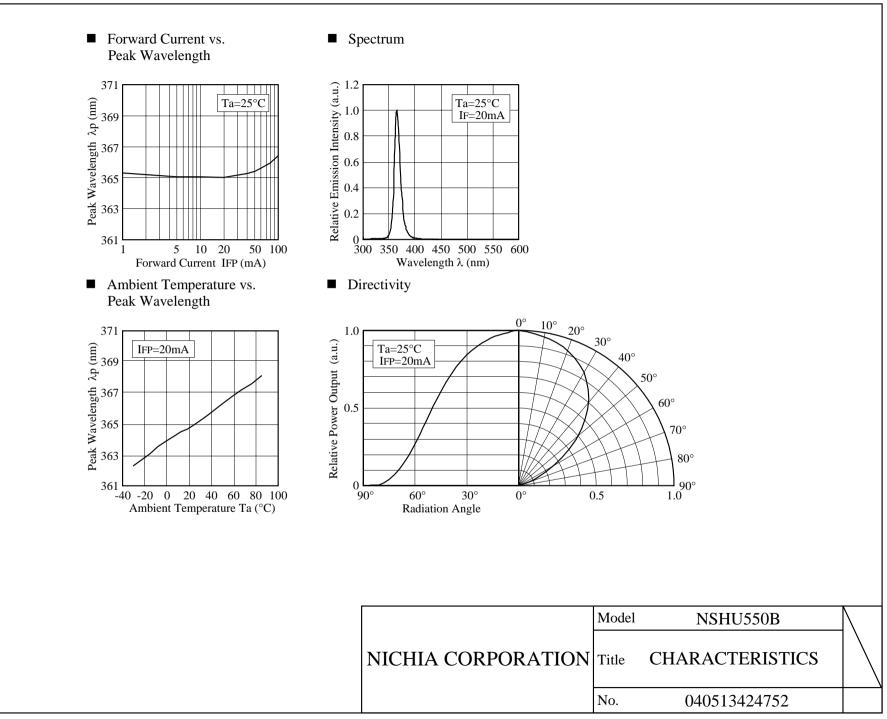
- \cdot A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.
- \cdot Dip soldering should not be done more than one time.
- \cdot Hand soldering should not be done more than one time.
- \cdot Do not apply any stress to the lead particularly when heated.
- \cdot The LEDs must not be repositioned after soldering.
- \cdot After soldering the LEDs, the lead should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- Direct soldering onto a PC board should be avoided. Mechanical stress to the glass may be caused from warping of the PC board or from the clinching and cutting of the leads. When it is absolutely necessary, the LEDs may be mounted in this fashion but the User will assume responsibility for any problems. Direct soldering should only be done after testing has confirmed that no damage, such as wire bond failure or glass deterioration, will occur. Nichia's LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the glass.
- \cdot When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- \cdot Cut the LED leads at room temperature. Cutting the leads at high temperatures may cause failure of the LEDs.

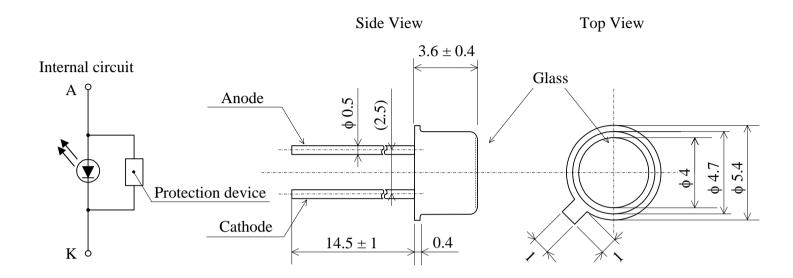
(6) Heat Generation

• Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification.

 \cdot The operating current should be decided after considering the ambient maximum temperature of LEDs.

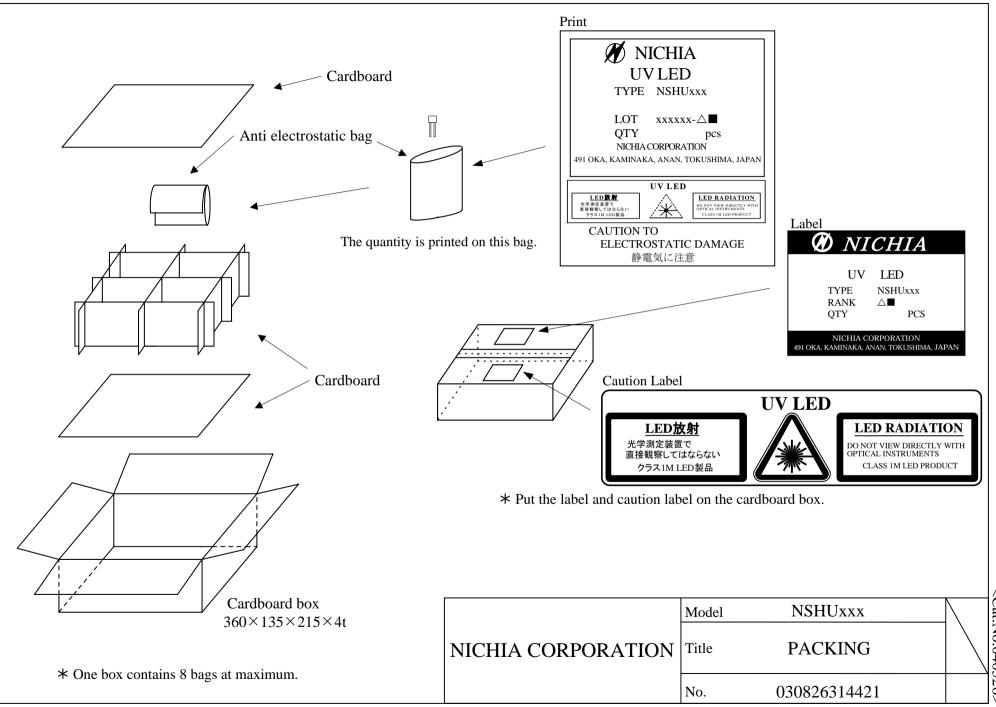

- (7) Cleaning
- It is recommended that isopropyl alcohol be used as a solvent for cleaning the LEDs. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the glass or not. Freon solvents should not be used to clean the LEDs because of worldwide regulations.
- Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Before cleaning, a pre-test should be done to confirm whether any damage to the LEDs will occur.

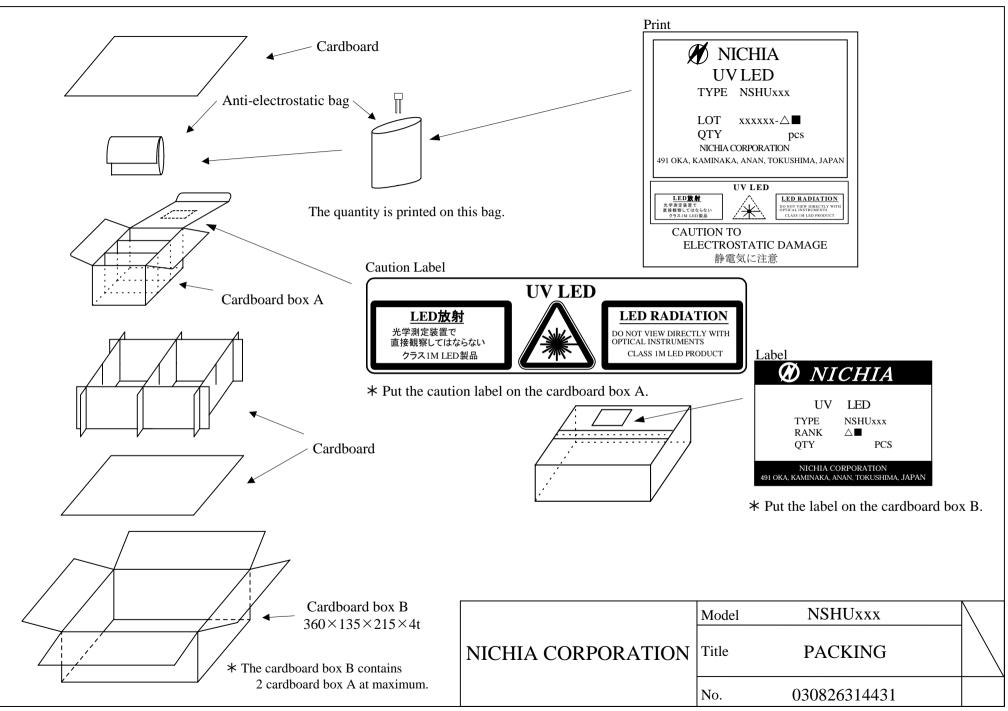

(8) Safety Guideline for Human Eyes


In 1993, the International Electric Committee (IEC) issued a standard concerning laser product safety (IEC 825-1). Since then, this standard has been applied for diffused light sources (LEDs) as well as lasers. In 1998 IEC 60825-1 Edition 1.1 evaluated the magnitude of the light source.
In 2001 IEC 60825-1 Amendment 2 converted the laser class into 7 classes for end products. Components are excluded from this system. Products which contain visible LEDs are now classified as class 1. Products containing UV LEDs are class 1M. Products containing LEDs can be classified as class 2 in cases where viewing angles are narrow, optical manipulation intensifies the light, and/or the energy emitted is high. For these systems it is recommended to avoid long term exposure.
It is also recommended to follow the IEC regulations regarding safety and labeling of products.

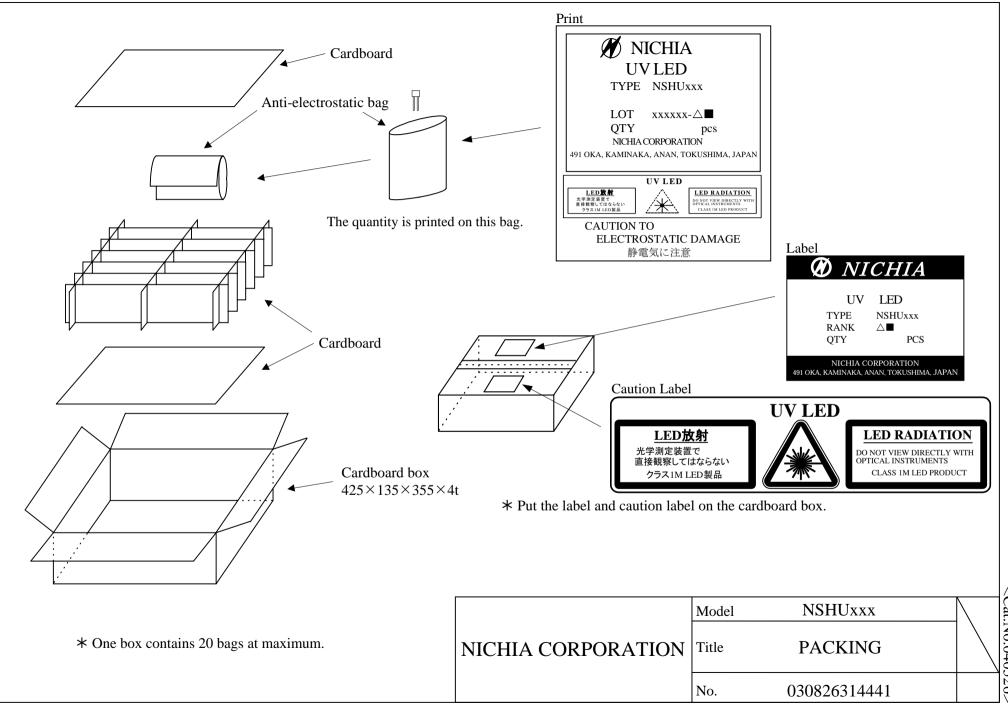
(9) Others

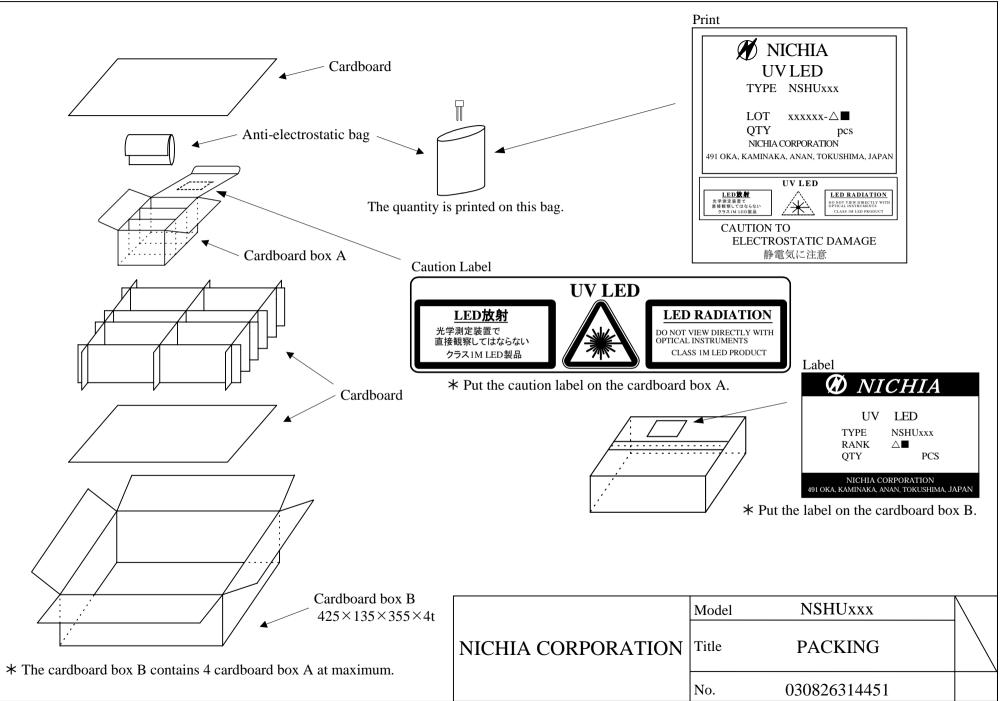
- \cdot NSHU550B complies with RoHS Directive.
- This LED also emits visible light. Please take notice of visible light spectrum, in case you use this LED as light source of sensors etc.
- The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliances). Consult Nichia's sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor control systems, automobiles, traffic control equipment, life support systems and safety devices).
- User shall not reverse engineer by disassembling or analysis of the LEDs without having the prior written consent of Nichia. When defective LEDs are found, User shall inform to Nichia directly before disassembling or analysis.
- \cdot The formal specifications must be exchanged and signed by both parties before large volume purchase begins.
- \cdot The appearance and specifications of the product may be modified for improvement without notice.





* NSHU550B has a protection device built in as a protection circuit against static electricity.


ITEM	MATERIALS			
GLASS	Hard Glass			
CAP	Ni Plating Iron Alloy			
LEAD	Au Plating Iron Alloy			


NICHIA CORPORATION	Model	NSHU550B	Unit	Cat.
	Title	OUTLINE DIMENSIONS	5/1 Scale	No.040:
	No.	040317424411	Allow ±0.2	526>

-11-

-13-