

Marketing Information TT 200 F

TT 200 F, TD 200 F, DT 200 F
Elektrische Eigenschaften
Höchstzulässige Werte
Periodische Vorwärts- und Rüc
Snitzensnerrsbannung
Vorwärts-Stoßspitzenspannung
Rückwärts-Stoßspitzenspannu
Durchlaßstrom-Grenzeffektivw
Dauergrenzstrom
Stoßstrom-Grenzwert
Grenzlastintegral
Kritische Stromsteilheit
Kritische Spannungssteilheit

Charakteristische Werte	
Durchlaßspannung	
Schleusenspannung	
Ersatzwiderstand	
Zündstrom	
Zündspannung	
Nicht zündender Steuerstrom	
Nicht zündende Steuerspannung	Haltestrom
Einraststrom	
Vorwärts- und Rückwärts-Sperrstrom	four
Zündverzug	Freiwerdezeit

Isolations-Prüfspannung
Thermische Eigenschaften
Innerer Wärmewiderstand

Übergangs-Wärmewiderstand
Höchstzul.Sperrschichttemperatur
Betriebstemperatur
Lagertemperatur
Mechanische Eigenschaften
Si-Elemente mit Druckkontakt Innere Isolation
Anzugsdrehmomente mechanische Befestigung elektrische Anschlüsse
Gewicht
Kriechstrecke
Schwingfestigkeit
Maßbild

Electrical properties
Maximum rated values

repetitive peak forward off-state and	$\mathrm{t}_{\mathrm{vj}}=-40^{\circ} \mathrm{C} \ldots . . \mathrm{tvj}_{\text {max }}$	$\mathrm{V}_{\text {DRM }}, \mathrm{V}_{\text {RRM }}$	800100011001200	V	
reverse voltages			1300		
non-repetitive peak forward off-state	$t_{v j}=-40^{\circ} \mathrm{C} \ldots \mathrm{t}_{\mathrm{vj} \text { max }}$	$V_{\text {DSM }}=V_{\text {DRM }}$			
voltade non-repetitive peak reverse voltage	$\mathrm{t}_{\mathrm{vj}}=+25^{\circ} \mathrm{C} \ldots \mathrm{t}_{\mathrm{vj} \text { max }}$	$V_{\text {RSM }}=\mathrm{V}_{\text {RRM }}$	+ 100	V	
RMS on-state current		$\mathrm{I}_{\text {TRMSM }}$	410	A	
average on-state current	$\mathrm{t}_{\mathrm{c}}=85^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {TAVM }}$	200	A	
	$\mathrm{t}_{\mathrm{c}}=68^{\circ} \mathrm{C}$		261	A	
surge current	$\mathrm{t}_{\mathrm{vj}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	$\mathrm{I}_{\text {TSM }}$	7200	A	
	$\mathrm{t}_{\mathrm{vj} /}=\mathrm{t}_{\mathrm{vj} \text { max }}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$		6400	A	
$\int \\|^{2}$ t-value	$\mathrm{t}_{\mathrm{vi}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	$\int I^{2} t$	260000	$A^{2} s$	
	$\mathrm{t}_{\mathrm{vi}}=\mathrm{t}_{\mathrm{vi} \text { max }}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$		205000	$A^{2} s$	
critical rate of rise of on-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{D}} \leq 67 \% \mathrm{~V}_{\mathrm{DRM}}, \mathrm{f}_{0}=50 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{GM}}=1 \mathrm{~A}, \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$(\mathrm{diT} / \mathrm{dt})_{\text {cr }}$	200	A/ s	
			1) 2)		

$\mathrm{t}_{\mathrm{vj}}=\mathrm{t}_{\mathrm{vj} \text { max }} \mathrm{i}_{\mathrm{T}}=700 \mathrm{~A}$
$t_{v j}=t_{v i \max } \quad v_{T}$
$\mathrm{t}_{\mathrm{vi}}=\mathrm{t}_{\mathrm{vi} \text { max }} \quad \mathrm{r}_{\mathrm{T}}$
$\mathrm{t}_{\mathrm{v} i}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{D}}=6 \mathrm{~V}$
I_{GT}
$\mathrm{t}_{\mathrm{vi}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{D}}=6 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{GT}}$
$\mathrm{t}_{\mathrm{vi}}=\mathrm{t}_{\mathrm{vi} \max ,}, \mathrm{v}_{\mathrm{D}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{GD}}$
$t_{v j}=t_{v i \max }, v_{D}=0,5 V_{D R M} \quad V_{G D}$
$\mathrm{t}_{\mathrm{vi}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{A}}=10 \Omega \quad \mathrm{I}_{\mathrm{H}}$
$\mathrm{t}_{\mathrm{vi}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{D}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{GK}}>=20 \Omega \quad \mathrm{I}_{\mathrm{L}}$
$\mathrm{i}_{\mathrm{GM}}=1 \mathrm{~A}, \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}, \mathrm{t}_{\mathrm{a}}=10 \mu \mathrm{~s}$
$t_{v j}=t_{\mathrm{vj} \text { max }} \quad i_{\mathrm{D}}$,
$v_{D}=V_{D R M}, v_{R}=V_{R R M}$
$t_{v i}=25^{\circ} \mathrm{C}, \mathrm{i}_{\mathrm{G}}=1 \mathrm{~A}, \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{t}_{\mathrm{gd}} \quad \max .1,2 \quad \mu \mathrm{~s}$
siehe techn. Erl./see Techn. Inf.
circuit commutated turn-off time
insulation test voltage
RMS, $f=50 \mathrm{~Hz}, 1$ min. $\quad V_{\text {ISOL }}$
Thermal properties thermal resistance, junction to case
thermal resistance, case to heatsink
$\Theta=180^{\circ} \mathrm{el}$. sin: pro
pro Zweig/per arm
DC: pro Modul/per module
pro Zweig/per arm
pro Modul/per module
pro Zweig/per arm
R_{th}
max. junction temperature
operating temperature
storage temperature
Mechanical properties
Si-pellet with pressure contact
internal insulation
tightening torques
mounting torque
terminal connection torque
weight
creepage distance
vibration resistance

E

5050 500500 50050 $1000500 \mathrm{~V} / \mu \mathrm{s}$

$$
\max .1,8
$$

$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{V} / \mathrm{\mu s}$
$\mathrm{~V} / \mathrm{\mu s}$

V
V
$m \Omega$
$\max 250 \mathrm{~mA}$
$\max .2,2 \quad V$
$\max .10 \mathrm{~mA}$
$\max .0,2 \quad \mathrm{~V}$
$\max .250 \mathrm{~mA}$
$\max 1 \quad A$
$\max .50 \mathrm{~mA}$
$\max .20$
max. 25

$\max .0,065$	${ }^{\circ} \mathrm{C} M$
$\max .0,13$	${ }^{\circ} \mathrm{C} M$
$\max .0,062$	${ }^{\circ} \mathrm{C} M$
$\max .0,124$	${ }^{\circ} \mathrm{C} M$
$\max .0,02$	${ }^{\circ} \mathrm{C} M$
$\max .0,04$	${ }^{\circ} \mathrm{C} M$
125	${ }^{\circ} \mathrm{C}$
$-40 \ldots+125$	${ }^{\circ} \mathrm{C}$
$-40 \ldots+130$	${ }^{\circ} \mathrm{C}$

1) Werte nach DIN 41787 (ohne vorausgehende Kommutierung) / Values according to DIN 41787 (without prior commutation)
2) Unmittelbar nach der Freiwerdezeit. / Immediately after turn-off time.

Daten der Dioden siehe unter DD 242 S bei $\mathrm{V}_{\text {RRM }} \leq 1000 \mathrm{~V}$ und DD 241 S bei $V_{R R M} \geq 1200 \mathrm{~V}$
For data of the diode refer to DD 242 S at $\mathrm{V}_{\text {RRM }} \leq 1000 \mathrm{~V}$ and DD 241 S at $\mathrm{V}_{\text {RRM }} \geq 1200 \mathrm{~V}$
TT 200 F , TD 200 F, DT 200 F können auch mit gemeinsamer Anode oder gemeiensamer Kathode geliefert werden.
TT 200 F , TD 200 F , DT 200 F can also be supplied with common anode or common cathode.

Bild / Fig. 1, 2, 3
Höchstzulässige Strombelastbarkeit in Abhängigkeit von der Halbschwin-
gungsdauer für einen Zweig bei: sinusförmigem Stromverlauf,
der angegebenen Gehäusetemperatur t^{C}
Vorwärts-Sperrspannung $V_{\text {DM }} \leq 0,67 \mathrm{~V}$ DRM
Spannungssteifheit dvD/dt gemäß 6. Kennbuchstaben.
Ausschaltverlustleistung

- Berücksichtigt für den Betrieb bei $\mathrm{f}_{0}=50 \mathrm{~Hz} . .0,4 \mathrm{kHz}$ für dvR/dt $\leq 500 \mathrm{~V} / \mu \mathrm{s}$ und Anstieg auf $V_{R M} \leq 0,67 V_{R R M}$
- nicht Berücksichtigt für Betrieb bei $\mathrm{f}_{0} \geq 1 \mathrm{kHz}$. Diese Kurven gelten jedoch für den Betrieb mit antiparalleler Diode oder $\mathrm{d} \mathrm{V}_{\mathrm{R}} / \mathrm{dt} \leq 100 \mathrm{~V} / \mu \mathrm{s}$ und Anstieg auf $V_{R M} \leq 50 \mathrm{~V}$.

Maximum allowable current load versus halfwave duration per arm at sinusoidal current waveform, given case temperature to,
forward off-state voltage vDM $\leq 0,67 V_{\text {DRM, }}$
circuit commutated turn-of time ta according to 5th code letter
rate of rise of voltage $\mathrm{dv}_{\mathrm{D}} / \mathrm{dt}$ according to 6th code letter.
Turn-of losses:

- taken into account for operation at $\mathrm{f}_{0}=50 \mathrm{~Hz}$ to 0.4 kHz for $\mathrm{dv} \mathrm{R}_{\mathrm{R}} / \mathrm{dt} \leq 500 \mathrm{~V} / \mu \mathrm{s}$ and rise up to $V_{R M} \leq 0.67 V_{R R M}$
- not taken into aocount for operation at $f_{0} \geq 1 \mathrm{kHz}$. But the curves are valid for operation with inverse paralleled diode or $\mathrm{dv} / \mathrm{dt} \leq 100 \mathrm{~V} / \mu \mathrm{s}$ and rise up to $v_{R M} \leq 50 \mathrm{~V}$.

Parameter: Wiederholfrequenz $\mathrm{f}_{0}[\mathrm{kHz}]$ Steuergenerator/Pulse generator: Repetition rate $\mathrm{f}_{0}[\mathrm{kH}-\mathrm{z}]$ $\mathrm{I}_{\mathrm{G}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{a}}=1 \mu \mathrm{~s}$

Bild / Fig. 4, 5, 6
Höchstzulässige Strombelastbarkeit in Abhängigkeit von der Stromsteilheit für einen Zweig bei: trapezförmigem Stromverlauf, der angegebenen Gehäu setemperatur t_{C};
Vorwärts-Sperrspannung v$V_{M} \leq 0,67 V_{R R M}$
Freiwerdezeit to gemäß 5 . Kennbuch stabe
Spannungssteifeit dv/dt gemäß 6. Kennbuchstabe.
Ausschaltverlustleistung berücksichtigt; die Kurven gelten für
Betrieb mit antiparalleler Diode oder
$\mathrm{d} \mathrm{v}_{\mathrm{R}} / \mathrm{dt} \leq 100 \mathrm{~V} / \mu \mathrm{s}$ bei Anstieg auf $\mathrm{v}_{\mathrm{RM}} \leq 50 \mathrm{~V}$
$----\mathrm{dVR}_{\mathrm{R}} / \mathrm{dt} \leq 600 \mathrm{~V} / \mu \mathrm{s}$ und Anstieg auf $\mathrm{VRM}_{\mathrm{R}}=0,67 \mathrm{~V}_{\mathrm{RRM}}$.
Maximum allowable current load versus of rise of current per arm at
trapezoidal current waveform, given case temperature t_{C},
forward off-state voltage $\mathrm{V}_{\mathrm{DM}} \leq 0.67 \mathrm{~V}_{\mathrm{DRM}}$
circuit commutated tum-off t_{a} acoording to 5 th code letter
rate of rise of voltage dv/at according to 6th code letter.
urn-off losses taken into aocount; the curves apply for:
Operation with inverse paralleled diod or
$-----d V_{R} / d t \leq 600 \mathrm{~V} / \mu \mathrm{s}$ rising up to $V_{R M}=0.67 V_{R R M}$

Parameter. Wiederholfrequenz $\mathrm{f}_{0}[\mathrm{kHz}]$ Steuergenerator/Pulse generator Repetition rate $\mathrm{f}_{0}[\mathrm{kH} / \mathrm{z}] \quad \mathrm{i}_{\mathrm{G}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{a}}=1 \mu \mathrm{~s}$

Bild / Fig. 10, 11, 12
Diagramme zur Ermittlung der Gesamtenergie $W_{\text {tot }}$ für einen trapezförmigen Durchlaß-Strompuls, für einen Zweig bei
der angegebenen Stromsteilheit $\mathrm{di}_{\mathrm{T}} / \mathrm{dt}$,
Vorwärts-Sperrspannung $\vee_{D M} \leq 0,67 V_{\text {DRM }}$,
Ruckwarts-Sperrspannung $\vee_{R M} \leq \mathrm{V}, 67 V_{R R M}$
Spannungssteilheit $d V_{R} / d t \leq 600 \mathrm{~V}$.
Diagram for the determination of the total energy $W_{\text {tot }}$ for a
trapezoidal current pulse for one arm at:
given rate of rise of on-state current diT/dt
given rate of nise of on-state current $\mathrm{dil}^{\top} / \mathrm{dt}$,
forward off-state voltage $\mathrm{v}_{\mathrm{DM}} \leq 0,67 \mathrm{~V}$
forward of-state voltage $V_{D M} \leq 0,67$
maximum reverse voltage $V_{R M} \leq 0.67 \mathrm{RM}$
rate of rise of off-state voltage $d v_{R} / \mathrm{dt}^{5} \leq 600 \mathrm{~V} / \mu \mathrm{s}$.

Steuergenerator/Pulse generator
$\mathrm{i}_{\mathrm{G}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{a}}=1 \mu \mathrm{~s}$

RC-Glied/RC network
$\underset{\mathrm{C}}{\mathrm{R}}[\Omega] \geq 0,02 \cdot \mathrm{~V}_{\mathrm{DM}}[\mathrm{V}]$

Bild / Fig. 13
Diagramm zur Ermittlung der Summe aus Einschalt- und Durchlaßverlustleistung ($\mathrm{PTT}^{+}+\mathrm{P}_{\mathrm{T}}$) je Z weig.
Diagram for the determination of the sum of the tum-on and on-state power loss per arm ($\mathrm{P}_{\mathrm{TT}}+\mathrm{P}_{\mathrm{T}}$).

Bild / Fig. 15
Zündbereich und Spitzensteuereistung bei $\mathrm{v}_{\mathrm{D}}=6 \mathrm{~V}$.

Gate characteristic and peak power dissipation at $\mathrm{v}_{\mathrm{D}}=6 \mathrm{~V}$.
Parameter:

Steuerimpulsdauer/Pulse duration tg_{g}	$[\mathrm{ms}]$	10	1	0,5

| $\begin{array}{l}\text { Höchstzulässige Spitzensteuerleistung/ } \\ \text { Maximum allowable peak gate power }\end{array}$ | [W] | 20 | 40 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Bidl/Fig. 14
Diagramm zur Ermittlung der Gesamtenergie $W_{\text {tot }}$ für einen sinusförmigen Durchlaß-Strompuls für einen Zweig.
Diagram for the determination of the total energy $W_{\text {tot }}$ for a sinusoidal on-state current pulse for one arm.

$\mathrm{i}_{\mathrm{G}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{a}}=1 \mu \mathrm{~s}$

T290 F1746
Bild / Fig. 16
Zündverzug/Gate controlled delay time t_{gd},
DIN $41787, \mathrm{t}_{2}=1 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{i}}=25^{\circ} \mathrm{C}$.
a - außerster vernaut/imiting characteristic
b-typischer Verlauftypical charcteristic

Bild / Fig. 18
Transienter innerer Wärmewiderstand je Zweig $\left.Z_{(\text {th }}\right) \mathrm{NC}$
Transient thermal impedance per arm $Z_{\text {(th })}, \mathrm{JC}$, junction to case

Analytische Đemente destransienten Wärmewiderstandes $Z_{\text {thJC }}$ pro Zweig für DC Analytical elements of transient thermal impedance $Z_{\text {thJC }}$ per arm for $D C$

Pos. n	1	2	3	4	5	6	7
$\mathrm{R}_{\mathrm{thn}}\left[{ }^{\circ} \mathrm{CM}\right]$	0,0031	0,0097	0,0257	0,0429	0,0426		
$\tau_{\mathrm{n}}[\mathrm{s}]$	0,0009	0,008	0,11	0,61	3,06		

Analytische Funktion / Analytical function:
$z_{\mathrm{tn} J \mathrm{C}}=\sum_{\mathrm{n}=1}^{n_{\text {max }}} R_{\text {thn }}\left(1 e^{-\frac{t}{\tau_{n}}}\right)$

Terms \& Conditions of Usage

Abstract

Attention The present product data is exclusively subscribed to technically experienced staff. This Data Sheet is describing the specification of the products for which a warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its specifications. Changes to the Data Sheet are reserved.

You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application. Should you require product information in excess of the data given in the Data Sheet, please contact your local Sales Office via "www.eupec.com / sales \& contact".

\section*{Warning}

Due to technical requirements the products may contain dangerous substances. For information on the types in question please contact your local Sales Office via "www.eupec.com / sales \& contact".

