TOSHIBA Field Effect Transistor Silicon P, N Channel MOS Type (U-MOS IV / U-MOS III)

TPCF8402

Portable Equipment Applications
Mortor Drive Applications
DC-DC Converter Applications

• Low drain-source ON resistance

: P Channel R_{DS} (ON) = 60 m Ω (typ.)

N Channel RDS (ON) = $38 \text{ m}\Omega$ (typ.)

• High forward transfer admittance

: P Channel $|Y_{fs}| = 5.9 \text{ S (typ.)}$

N Channel $|Y_{fs}| = 6.8 \text{ S (typ.)}$

• Low leakage current

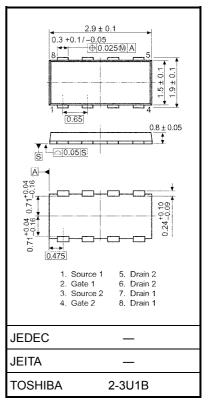
: P Channel IDSS = $-10 \mu A (VDS = -30 V)$

N Channel IDSS = $10 \mu A \text{ (VDS} = 30 \text{ V)}$

• Enhancement-mode

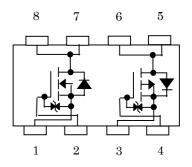
: P Channel $V_{th} = -0.8$ to -2.0 V ($V_{DS} = -10$ V, $I_{D} = -1$ mA)

N Channel V_{th} = 1.3 to 2.5 V (V_{DS} = 10 V, I_{D} = 1mA)

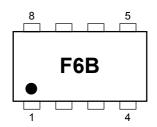

Maximum Ratings (Ta = 25°C)

Cł	Symbol	Rating		Unit		
Drain-source v	V _{DSS}	-30	30	V		
Drain-gate vol	Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)			30	V	
Gate-source v	oltage	V _{GSS}	±20	±20	V	
Drain current	DC (Note 1)	ID	-3.2	4.0	Α	
Diain current	Pulse (Note 1)	I _{DP}	-12.8	16.0	^	
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	1.35	1.35	W	
(t = 5 s) (Note 2a)	Single-device value at dual operation(Note 3b)	P _{D (2)}	1.12	1.12		
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	0.53	0.53		
(t = 5 s) (Note 2b)	Single-device value at dual operation(Note 3b)	P _{D (2)}	0.33	0.33		
Single pulse a	valanche energy(Note 4)	E _{AS}	0.67	2.6	mJ	
Avalanche cur	rent	I _{AR}	-1.6	2.0	Α	
Repetitive avalanche energy Single-device value at dual operation (Note 2a, 3b, 5)		E _{AR}	0.11		mJ	
Channel temp	Channel temperature			150		
Storage temper	T _{stg}	-55~150		°C		

Note: For (Note 1), (Note 2), (Note 3), (Note 4), (Note 5) and (Note 6), please refer to the next page.

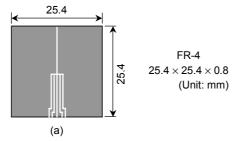

This transistor is an electrostatic sensitive device. Please handle with caution.

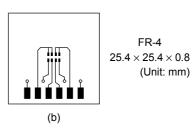
Unit: mm



Weight: 0.011 g (typ.)

Circuit Configuration


Marking (Note 6)



Thermal Characteristics

Charac	Symbol Max		Unit		
Thermal resistance, channel to ambient (t = 5 s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	92.6	°C/W	
	Single-device value at dual operation (Note 3b) Rth (ch-a) (2)		111.6		
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	235.8	°C/W	
(t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	378.8	C/VV	

- Note 1: Please use devices on condition that the channel temperature is below 150°C.
- Note 2: (a) Device mounted on a glass-epoxy board (b) Device mounted on a glass-epoxy board (b)

- Note 3: a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.).
 - b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.).
- Note 4: P Channel: $V_{DD}=-24$ V, $T_{ch}=25^{\circ}$ C (initial), L = 0.2 mH, $R_{G}=25$ Ω , $I_{AR}=-1.6$ A N Channel: $V_{DD}=24$ V, $T_{ch}=25^{\circ}$ C (initial), L = 0.5 mH, $R_{G}=25$ Ω , $I_{AR}=2.0$ A
- Note 5: Repetitive rating; Pulse width limited by Max. Channel temperature.
- Note 6: Black round marking " " locates on the left lower side of parts number marking "F6B indicates terminal No. 1.

P-ch

Electrical Characteristics (Ta = 25°C)

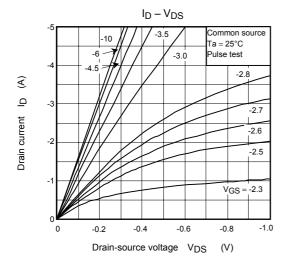
Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Drain cut-off current		I _{DSS}	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	-10	μΑ
Drain-source breakdown voltage		V _{(BR)DSS}		_	_	V	
		V _{(BR)DSX}		-15	_	_	V
Gate threshold vo	oltage	V _{th}	$V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA}$	-0.8	_	-2.0	٧
Drain-source ON	rosistanco	Pro (out)	$V_{GS} = -4.5 \text{ V}, I_D = -1.6 \text{A}$	_	80	105	- mΩ
Dialii-Source ON	resistance	R _{DS} (ON)	$V_{GS} = -10 \text{ V}, I_D = -1.6 \text{ A}$	_	60	72	
Forward transfer	admittance	Y _{fs}	$V_{DS} = -10 \text{ V}, I_D = -1.6 \text{ A}$	2.9	5.9	_	S
Input capacitance	9	C _{iss}		_	600	_	
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	60	_	pF
Output capacitance		Coss		_	70	_	
	Rise time	t _r	$V_{GS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, 1 = 1 \text{ NM } 12$ $V_{GS} = -16 \text{ A}$ V_{GS}	_	5.3	_	
Switching time	Turn-on time	t _{on}		_	12	_	- ns
Switching time	Fall time	t _f		_	8.4	_	
	Turn-off time	t _{off}		_	34	_	
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \simeq -24 \text{ V}, V_{GS} = -10 \text{ V},$ $I_{D} = -3.2 \text{ A}$		14	_	nC
Gate-source charge 1		Q _{gs1}		_	1.4	_	
Gate-drain ("miller") charge		Q _{gd}		_	2.7	_	

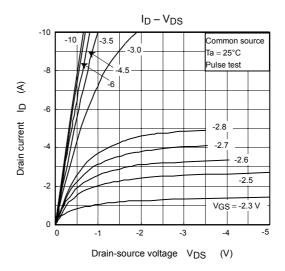
Source-Drain Ratings and Characteristics (Ta = 25°C)

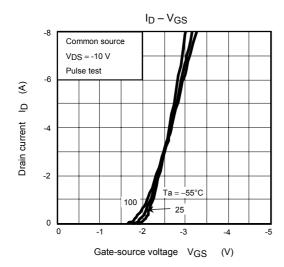
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	-12.8	Α
Forward voltage (diode)		V_{DSF}	$I_{DR} = -3.2 \text{ A}, V_{GS} = 0 \text{ V}$			1.2	V

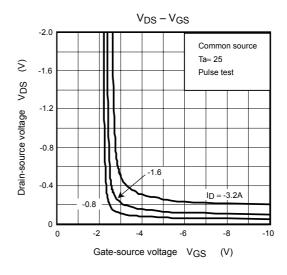
3 2003-08-18

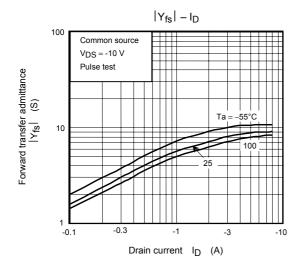
Electrical Characteristics (Ta = 25°C)

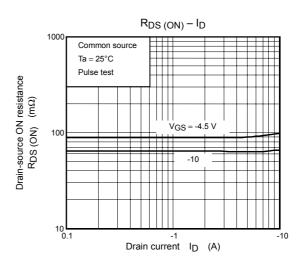

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	V _{GS} = ±16 V, V _{DS} = 0 V	_	_	±10	μΑ
Drain cut-off curre	ent	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V	_	_	10	μA
Drain-source brea	akdown	own V _{(BR) DSS} I _D	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	30			· V
voltage		V _{(BR) DSX}	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	15	_	_	v
Gate threshold vo	oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	1.3	_	2.5	V
Drain-source ON	rociotanos	D=	V _{GS} = 4.5 V, I _D = 2.0 A	_	58	77	- mΩ
Dialii-source ON	resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 2.0 A	_	38	50	
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 2.0 A	3.4	6.8	_	S
Input capacitance	•	C _{iss}		_	470	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	60	_	pF
Output capacitance		Coss		_	80	_	
	Rise time	t _r	$V_{GS} = 2.0 \text{ A}$ $V_{GS} = 0 \text{ V}$ $V_{DD} \approx 15 \text{ V}$ $V_{DD} \approx 15 \text{ V}$ $V_{DD} \approx 15 \text{ V}$	_	5.2	_	
Switching time	Turn-on time	t _{on}		_	8.3	_	
Switching time	Fall time	t _f		_	4.0	_	- ns
	Turn-off time	t _{off}		_	22	_	
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} ≈ 24 V, V _{GS} = 10 V, I _D = 6 A	_	10	_	nC
Gate-source charge 1		Q _{gs1}		_	1.7	_	
Gate-drain ("miller") charge		Q_{gd}			2.4	_	

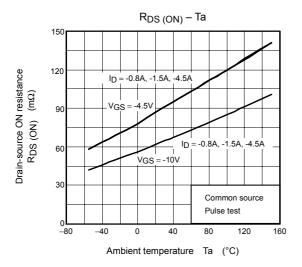

Source-Drain Ratings and Characteristics (Ta = 25°C)

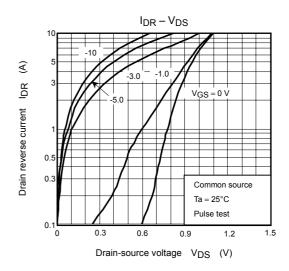

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	16.0	Α
Forward voltage (diode)		V _{DSF}	I _{DR} = 4.0 A, V _{GS} = 0 V	_	_	-1.2	V

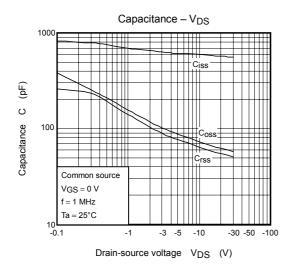

4

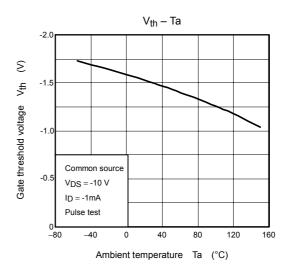

P-ch

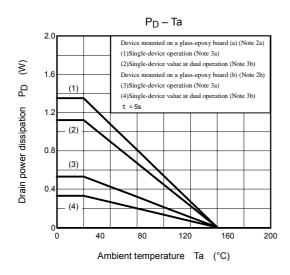


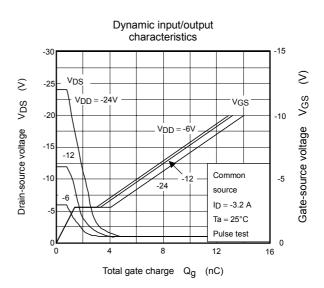


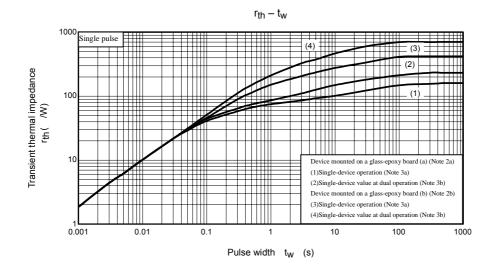


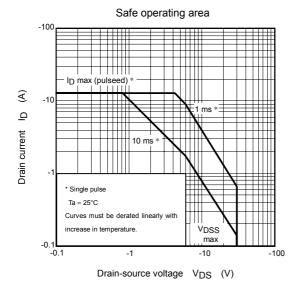


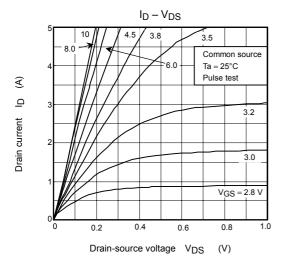


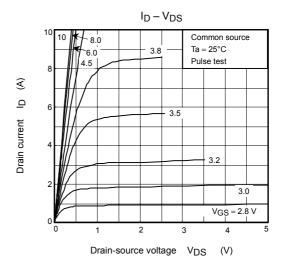

P-ch

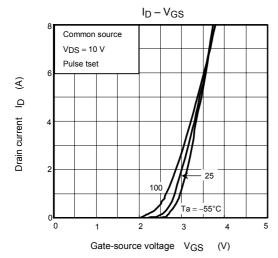


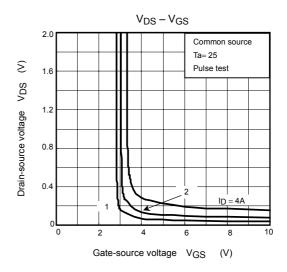


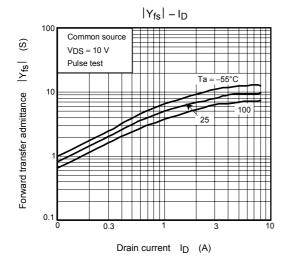


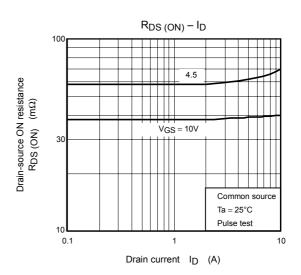


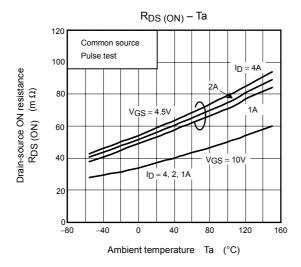

P-ch

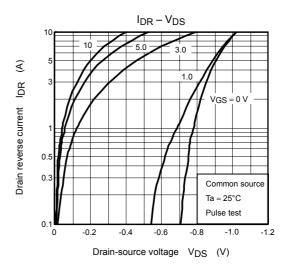


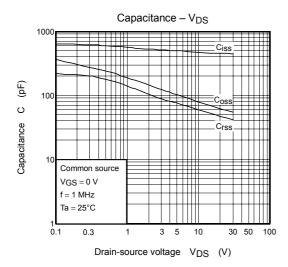


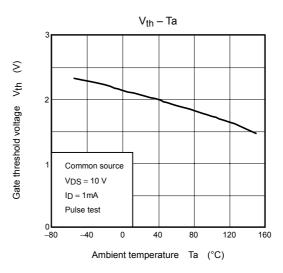

7

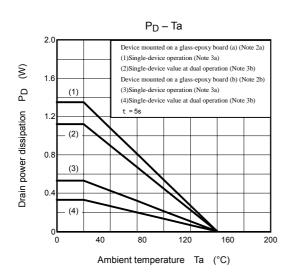


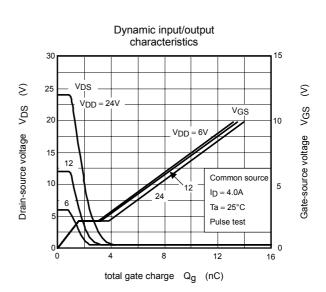


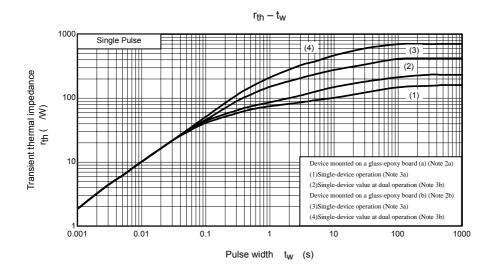


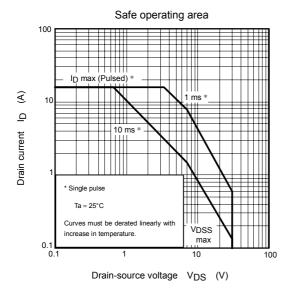












9

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.