SK 80 TAA

SEMITOP®3

Thyristor module

SK 80 TAA

Target Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide (DCB)
- Glass passivated thyristor chips
- Up to 1600V reverse voltage
- · High surge currents

Typical Applications

- Motor drives
- Controlled battery chargers

V _{RSM} V	V _{RRM} , V _{DRM}	$I_D = 81 \text{ A (full conduction)}$ $(T_S = 80 ^{\circ}\text{C})$
900	800	SK 80 TAA 08.
1300	1200	SK 80 TAA 12
1700	1600	SK 80 TAA 16

Symbol	Conditions	Values	Units
I _D	T _s = 80 °C	81	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	2000	Α
	T _{vi} = 125 °C; 10 ms	1800	Α
i²t	T_{vj} = 25 °C; half sine wave, 10 ms	20000	A²s
	T _{vj} = 25 °C; half sine wave,10 ms	16200	A²s
V _T	T _{vj} = 25 °C; I _T = 300 A	max. 1,85	V
$V_{T(T0)}$	T _{vi} = 125 °C;	max. 0,85	V
r _T	T _{vj} = 125 °C	max. 3,5	mΩ
I_{DD} ; I_{RD}	T_{vj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 10	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 50 60 Hz	max. 50	A/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	80	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	100 / 200	mA
$I_{\underline{L}}$	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 _{\Omega}$	200 / 500	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 2	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
R _{th(j-s)}	cont.per thyristor	0,45	K/W
• ,	sin. 180° per thyristor	0,47	K/W
T _{solder}	Terminals, 10s	260	°C
T _{vi}		-40 + 125	°C
T _{stg}		-40 +12 5	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 (2500)	V
M _s	Mounting torque to heatsink	typ. 2,5	Nm
m		30	g
Case	SEMITOP®2	T 86	

SK 80 TAA

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.