
SK 8 BGD 065 E

SEMITOP® 2

1-phase bridge rectifier+3-phase bridge inverter

SK 8 BGD 065 E

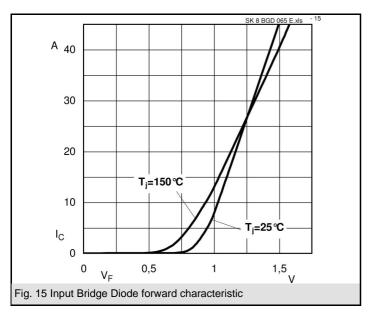
Target Data

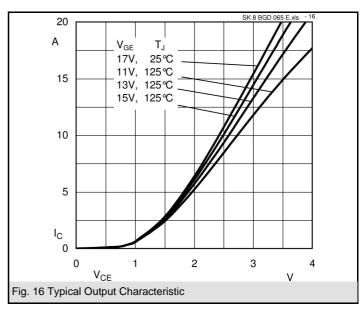
Features

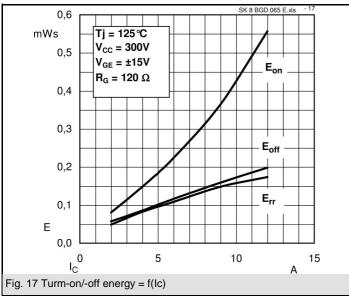
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependance

Typical Applications

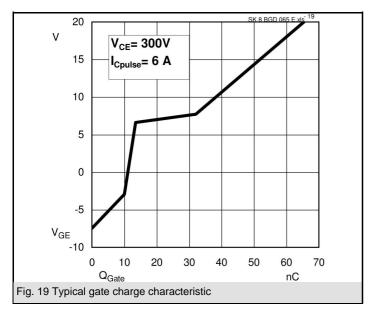
- Inverter
- Servo drives

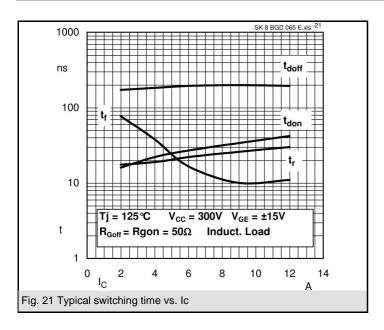


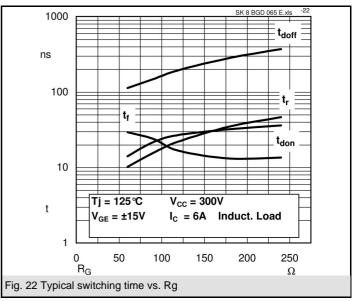


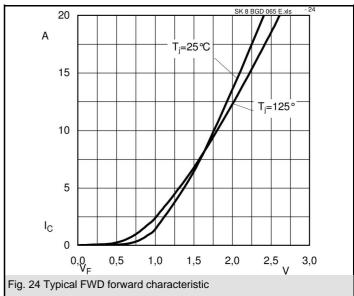

Absolute Maximum Ratings T _s = 25°C, unless otherwise speci							
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V_{CES}		600	V				
I _C	T _s = 25 (80) °C	12 (8)	Α				
I _{CM}	$T_s = 25 (80) ^{\circ}\text{C} , \text{ tp} \le 1 \text{ ms}$	24 (16)	Α				
V_{GES}		±20	V				
T_j		-40 +150	°C				
Diode - Inverter							
I _F	T _s = 25 (80) °C	(13)	Α				
$I_{FM} = -I_{CM}$	$T_s = 25 (80) ^{\circ}C, tp \le 1 ms$	(26)	Α				
T_{j}		-40 + 150	°C				
Rectifier							
V_{RRM}		800	V				
I _{FAV} / I _{TAV}	T _s = 80 °C	20	Α				
I_{FSM} / I_{TSM}	t _p = 10 ms , sin 180 ° ,T _j = 125 °C	220	Α				
I ² _t	$t_p = 10 \text{ ms}$, sin 180 °, $T_j = 125 \text{ °C}$	240	A²s				
T_j		-40 + 150	°C				
T _{sol}	Terminals, 10s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V				

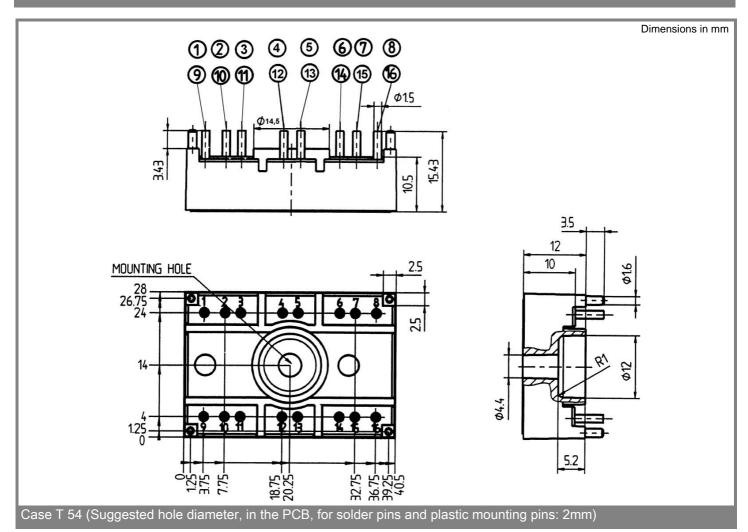
Character	ristics	T _s = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat} V _{GE(th)}	$I_C = 6 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $V_{GE} = V_{CE}, I_C = 0,5 \text{ mA}$	3	2 (2,2)	5	V			
V _{CE(TO)}	$T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $V_{CE} = V_{GE} = 0 \text{V}, f = 1 \text{MHz}$		1,2 (1,1) 133 (183)		V mΩ nF			
C _{ies} C _{oes} C _{res}	$V_{CE} = V_{GE} = 0 \text{ V}, 1 = 1 \text{ NH12}$ $V_{CE} = V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		- 0,03		nF nF			
R _{th(j-s)}	per IGBT			2,6	K/W			
t _{d(on)} t _r t _{d(off)} t _f	under following conditions V_{CC} = 300 V, V_{GE} = ± 15 V I_{C} = 6 A, T_{j} = 125 °C R_{Gon} = R_{Goff} = 120 Ω inductive load		20 25 145 25 0,22		ns ns ns ns			
E _{on}	Inductive load		0,22		mJ mJ			
Diode - In	verter							
$V_{F} = V_{EC}$ $V_{(TO)}$ r_{T} $R_{th(j-s)}$	$I_F = 8 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $T_j = ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $T_j = ^{\circ}\text{C} (125) ^{\circ}\text{C}$ per diode		1,35 (0,8) (44)	(0,9)	V V mΩ K/W			
I _{RRM} Q _{rr} E _{rr}	under following conditions $I_F = 8 \text{ A}, V_R = 300 \text{ V}$ $V_{GE} = 0 \text{ V}, T_j = 125 ^{\circ}\text{C}$ $di_{F/dt} = -120 \text{ A/µs}$		4,2 0,65		Α μC mJ			
Diode rectifier								
$\begin{aligned} & V_{F} \\ & V_{(TO)} \\ & r_{T} \\ & R_{th(j-s)} \end{aligned}$	$I_F = 20 \text{ A}, T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$ per diode		1,1 0,85 15	2,15	V V mΩ K/W			
Temperatur sensor								
R _{ts}	%, T _r = () °C		()		Ω			
Mechanical data								
w M _s	Mounting torque		19	2	g Nm			

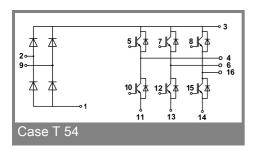

SK 8 BGD 065 E










SK 8 BGD 065 E

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.