

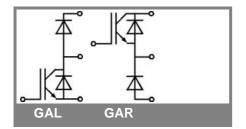
SEMITOP® 2

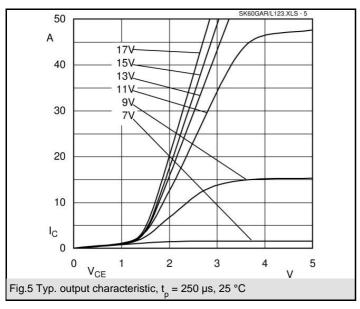
IGBT Module

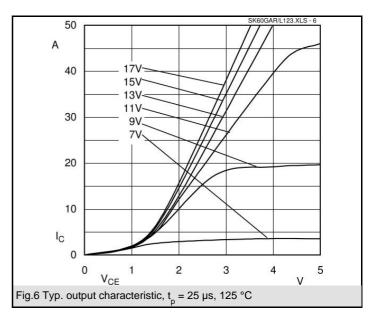
SK 60 GAR 123 SK 60 GAL 123

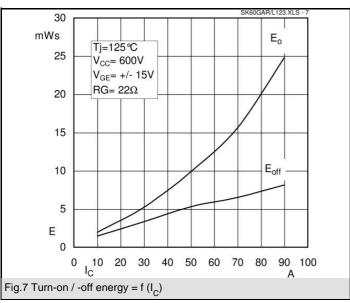
Preliminary Data

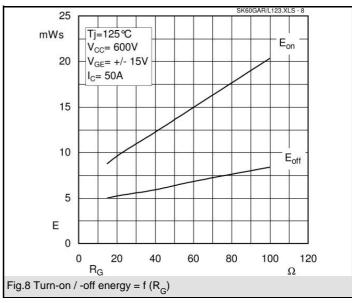
Features

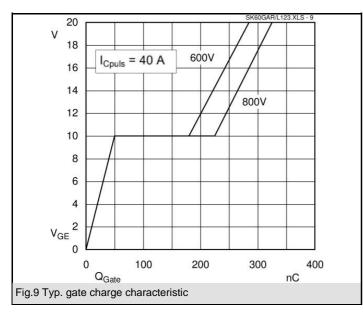

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- High short circuit capability
- NPT (Non-Punch-Through technology)
- V_{ce(sat)} with positive coefficient
 Low tail with low temperature dependance

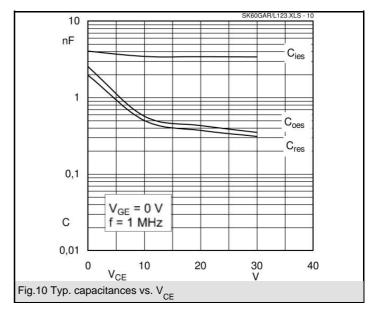

Typical Applications

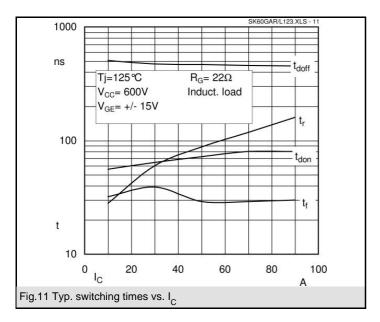

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

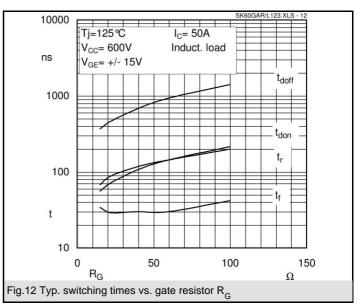

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	$T_s = 25 (80) ^{\circ}C;$	58 (40)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	116 (80)	Α				
T _j	·	- 40 + 150	°C				
Freewheeling CAL diode							
I _F	$T_s = 25 (80) ^{\circ}C;$	57 (38)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	104 (38)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V_{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

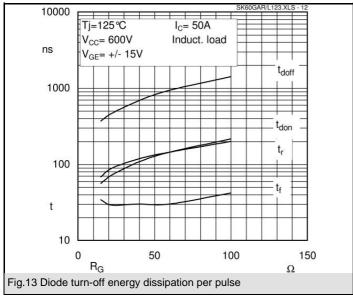

Characteristics		T _s = 25 °C	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT		•	-		•	
$V_{\text{CE(sat)}} \\ V_{\text{GE(th)}} \\ C_{\text{ies}} \\ R_{\text{th(j-s)}}$	$\begin{split} &I_{C} = 50 \text{ A, T}_{j} = 25 \text{ (125) }^{\circ}\text{C} \\ &V_{CE} = V_{GE}; \ I_{C} = 0,002 \text{ A} \\ &V_{CE} = 25 \text{ V; V}_{GE} = 0 \text{ V; 1 MHz} \\ &\text{per IGBT} \\ &\text{per module} \end{split}$	4,5	2,5 (3,1) 5,5 3,3	3 (3,7) 6,5 0,6	V V nF K/W	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f $E_{on} + E_{off}$	under following conditions: $\begin{aligned} &V_{CC}=600 \text{ V}, V_{GE}=\pm 15 \text{ V} \\ &I_{C}=50 \text{ A}, T_{j}=125 \text{ °C} \\ &R_{Gon}=R_{Goff}=22 \Omega \end{aligned}$ Inductive load		70 90 460 30 16		ns ns ns ns	
	eling CAL diode	L				
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	$I_F = 50 \text{ A; } T_j = 25 \text{ (125) } ^{\circ}\text{C}$ $T_j = (125) ^{\circ}\text{C}$ $T_j = (125) ^{\circ}\text{C}$		2 (1,8) (1) (18)	2,5 (1,2) (22) 0,9	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 50 \text{ A}; V_R = 600 \text{ V}$ $dI_F/dt = -800 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 \text{ °C}$		40 8 2,3		Α μC mJ	
Mechanic	cal data					
M1	mounting torque			2	Nm	
w			19		g	
Case	SEMITOP® 2		T 18			

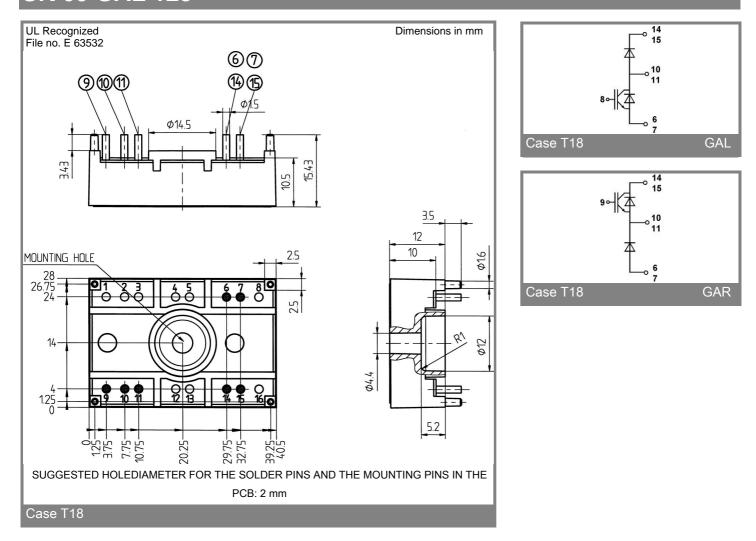












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.