
SK 60 GB 125

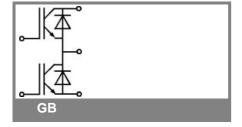
SEMITOP® 3

IGBT Module

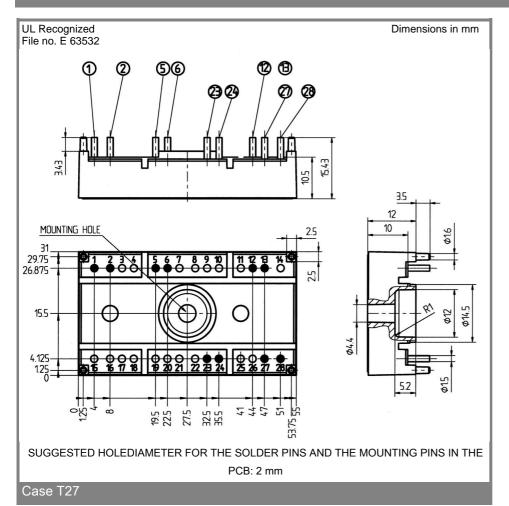
SK 60 GB 125

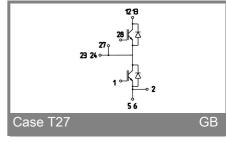
Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- NPT technology
- V_{ce(sat)} with positive coefficient

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	51 (35)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$	103 (70)	Α				
T_j		- 40 + 150	°C				
Inverse / Freewheeling CAL diode							
I _F	T _s = 25 (80) °C;	57 (38)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	114 (38)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Characteristics		T_s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{CE(sat)}	I _C = 50 A, T _i = 25 (125) °C		3,2 (3,85)		V			
V _{GE(th)}	$V_{CE} = V_{GE}; I_{C} = 50 \text{ A}$	4,5	5,5	6,5	V			
C _{ies}	$V_{CE} = 15 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		3,4		nF			
$R_{th(j-s)}$	per IGBT			0,6	K/W			
	per module				K/W			
	under following conditions:							
t _{d(on)}	$V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		130		ns			
t _r	I _C = 50 A, T _j = 125 °C		60		ns			
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 13 \Omega$		360		ns			
t _f			30		ns			
$E_{on} + E_{off}$	Inductive load		8,5		mJ			
Inverse /	Freewheeling CAL diode							
$V_F = V_{EC}$	I _F = 50 A; T _i = 25 (125) °C	1	2 (1,8)		V			
V _(TO)	$T_j = 125 ^{\circ}\text{C}$		1	1,2	V			
r _T	T _j = 125 () °C		16	22	mΩ			
$R_{th(j-s)}$				0,9	K/W			
	under following conditions:							
I _{RRM}	I _F = 50 A; V _R = 600 V		40		Α			
Q_{rr}	$dI_F/dt = -800 A/\mu s$		8		μC			
E _{off}	V _{GE} = 0 V; T _j = 125 °C		2		mJ			
Mechanic	cal data	•			•			
M1	mounting torque			2,5	Nm			
w			29		g			
Case	SEMITOP® 3		T 27					

SK 60 GB 125

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.