SK40GB067

IGBT Module

SK40GB067 SK40GAL067 SK40GAR067

Target Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT

Non-Punch-Through IGBT)

- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- · Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s				= 25 °C, unless otherwise specified			
Symbol	Conditions			Values	Units		
IGBT							
V_{CES}	T _j = 25 °C			600	V		
I _C	T _j = 125 °C	T _s = 25 °C		62	Α		
		T _s = 80 °C		41	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			180	Α		
V_{GES}				± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C		10	μs		
Inverse D	iode				•		
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		62	Α		
		T _s = 80 °C		38	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α		
I _{FSM}	t _p = 10 ms; sinusoidal	$T_j = ^{\circ}C$		270	Α		
Module							
I _{t(RMS)}					Α		
T_{vj}				-40 + 150	°C		
T _{stg}				-40 + 125	°C		
V _{isol}	AC, 1 min.			2500	V		

Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.9$ mA		3	4	5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,006	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			360	nA
V _{CE0}		T _j = 150 °C			2	V
r _{CE}	V _{GE} = 15 V	T _j = 150°C		17		mΩ
V _{CE(sat)}	I _{Cnom} = 90 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,8	3,15	V
		$T_j = 125^{\circ}C_{chiplev}$		3,5	4	V
C _{ies}				4,5		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,45		nF
C _{res}				0,27		nF
t _{d(on)}				20		ns
t _r E _{on}	$R_{Gon} = 11 \Omega$	$V_{CC} = 400V$		10		ns
E _{on}		I _{Cnom} = 90A		2,8		mJ
t _{d(off)}	$R_{Goff} = 11 \Omega$	T _j = 125 °C		270		ns
t _f		V _{GE} =±15V		28		ns
E _{off}				2,1		mJ
R _{th(j-s)}	per IGBT				0,6	K/W

SK40GB067

IGBT Module

SK40GB067 SK40GAL067 SK40GAR067

Target Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT

Non-Punch-Through IGBT)

- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- · Switched mode power supplies
- UPS

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
	Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 90 A; V_{GE} = 0 V				2	V		
		T_j = 150 °C _{chiplev} .		1,25		V		
V_{F0}		T _j = 25 °C				V		
		T _j = 150 °C		1		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 150 °C		5,5		mΩ		
I _{RRM}	I _{Fnom} = 90 A	T _j = 125 °C				Α		
Q_{rr}	di/dt = -100 A/μs	•				μC		
E _{rr}	V _{CC} = 400V					mJ		
$R_{th(j-s)D}$	per diode				1,2	K/W		
M_s	to heat sink		2,25		2,5	Nm		
w				29		g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK40GB067

