SK40GB067 ## **IGBT** Module SK40GB067 SK40GAL067 SK40GAR067 **Target Data** ### **Features** - Compact design - · One screw mounting - Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB) - Hyperfast NPT technology IGBT - N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT) - Positive V_{ce,sat} temperature coefficient (Easy paralleling) - Low tail current with low temperature dependence - · Low treshold voltage ### **Typical Applications** - Switching (not for linear use) - High Frequencies Applications - Welding generator - · Switched mode power supplies - UPS | Absolute Maximum Ratings T _s | | | | = 25 °C, unless otherwise specified | | | | |---|---|-------------------------|--|-------------------------------------|-------|--|--| | Symbol | Conditions | | | Values | Units | | | | IGBT | | | | | | | | | V_{CES} | T _j = 25 °C | | | 600 | V | | | | I _C | T _j = 125 °C | T _s = 25 °C | | 62 | Α | | | | | | T _s = 80 °C | | 41 | Α | | | | I _{CRM} | I _{CRM} = 2 x I _{Cnom} | | | 180 | Α | | | | V_{GES} | | | | ± 20 | V | | | | t _{psc} | V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V | T _j = 125 °C | | 10 | μs | | | | Inverse D | iode | | | | • | | | | I _F | T _j = 150 °C | $T_s = 25 ^{\circ}C$ | | 62 | Α | | | | | | T _s = 80 °C | | 38 | Α | | | | I _{FRM} | I _{FRM} = 2 x I _{Fnom} | | | | Α | | | | I _{FSM} | t _p = 10 ms; sinusoidal | $T_j = ^{\circ}C$ | | 270 | Α | | | | Module | | | | | | | | | I _{t(RMS)} | | | | | Α | | | | T_{vj} | | | | -40 + 150 | °C | | | | T _{stg} | | | | -40 + 125 | °C | | | | V _{isol} | AC, 1 min. | | | 2500 | V | | | | Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified | | | | | | | |--|--|---|------|------|-------|-------| | Symbol | Conditions | | min. | typ. | max. | Units | | IGBT | | | | | | | | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_C = 0.9$ mA | | 3 | 4 | 5 | V | | I _{CES} | $V_{GE} = 0 V, V_{CE} = V_{CES}$ | T _j = 25 °C | | | 0,006 | mA | | I _{GES} | V _{CE} = 0 V, V _{GE} = 20 V | T _j = 25 °C | | | 360 | nA | | V _{CE0} | | T _j = 150 °C | | | 2 | V | | r _{CE} | V _{GE} = 15 V | T _j = 150°C | | 17 | | mΩ | | V _{CE(sat)} | I _{Cnom} = 90 A, V _{GE} = 15 V | T _j = 25°C _{chiplev.} | | 2,8 | 3,15 | V | | | | $T_j = 125^{\circ}C_{chiplev}$ | | 3,5 | 4 | V | | C _{ies} | | | | 4,5 | | nF | | C _{oes} | $V_{CE} = 25, V_{GE} = 0 V$ | f = 1 MHz | | 0,45 | | nF | | C _{res} | | | | 0,27 | | nF | | t _{d(on)} | | | | 20 | | ns | | t _r E _{on} | $R_{Gon} = 11 \Omega$ | $V_{CC} = 400V$ | | 10 | | ns | | E _{on} | | I _{Cnom} = 90A | | 2,8 | | mJ | | t _{d(off)} | $R_{Goff} = 11 \Omega$ | T _j = 125 °C | | 270 | | ns | | t _f | | V _{GE} =±15V | | 28 | | ns | | E _{off} | | | | 2,1 | | mJ | | R _{th(j-s)} | per IGBT | | | | 0,6 | K/W | ## **SK40GB067** ## **IGBT** Module SK40GB067 SK40GAL067 SK40GAR067 **Target Data** #### **Features** - Compact design - · One screw mounting - Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB) - Hyperfast NPT technology IGBT - N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT) - Positive V_{ce,sat} temperature coefficient (Easy paralleling) - Low tail current with low temperature dependence - · Low treshold voltage ### **Typical Applications** - Switching (not for linear use) - High Frequencies Applications - Welding generator - · Switched mode power supplies - UPS | Characteristics | | | | | | | | | |------------------|-----------------------------------|-------------------------------------|------|------|------|-------|--|--| | Symbol | Conditions | | min. | typ. | max. | Units | | | | | Inverse Diode | | | | | | | | | $V_F = V_{EC}$ | I_{Fnom} = 90 A; V_{GE} = 0 V | | | | 2 | V | | | | | | T_j = 150 °C _{chiplev} . | | 1,25 | | V | | | | V_{F0} | | T _j = 25 °C | | | | V | | | | | | T _j = 150 °C | | 1 | | V | | | | r _F | | T _j = 25 °C | | | | mΩ | | | | | | T _j = 150 °C | | 5,5 | | mΩ | | | | I _{RRM} | I _{Fnom} = 90 A | T _j = 125 °C | | | | Α | | | | Q_{rr} | di/dt = -100 A/μs | • | | | | μC | | | | E _{rr} | V _{CC} = 400V | | | | | mJ | | | | $R_{th(j-s)D}$ | per diode | | | | 1,2 | K/W | | | | M_s | to heat sink | | 2,25 | | 2,5 | Nm | | | | w | | | | 29 | | g | | | This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. # SK40GB067