SK 40 GB 067

SEMITOP® 3

IGBT Module

SK 40 GB 067 SK 40 GAR 067 SK 40 GAL 067

Target Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- Hyper fast NPT IGBT
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Positive Vcesat temperature coefficient (Easy paralleling)
- · Low threshold voltage
- Low tail current with low temperature dependence

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding Generator
- Switched mode power supplies
- UPS

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		600	V					
V_{GES}		± 20	V					
I _C	$T_s = 25 (80) ^{\circ}C;$	62 (41)	Α					
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	124 (82)	Α					
T _j		- 40 + 150	°C					
Inverse / Freewheeling Diode								
I _F	$T_s = 25 (80) ^{\circ}C;$	62 (38)	Α					
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	124 (76)	Α					
T _j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

Characteristics T _s = 25 °C, unless otherwise specified								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{CE(sat)}	$I_C = 90 \text{ A}, T_j = 25 (150) ^{\circ}\text{C}$		2,8 (3,5)		V			
$V_{GE(th)}$	$V_{CE} = V_{GE}$; $I_{C} = 0,0021 \text{ A}$	3	4	5	V			
C _{ies}	$V_{CE} = 15 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		4,5		nF			
$R_{th(j-s)}$	per IGBT			0,6	K/W			
	per module				K/W			
	under following conditions:							
$t_{d(on)}$	$V_{CC} = 400 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		20		ns			
t _r	I _C = 90 A, T _i = 125 °C		10		ns			
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 11 \Omega$		270		ns			
t _f			28		ns			
$E_{on} + E_{off}$	Inductive load		5,1		mJ			
Inverse / Freewheeling Diode								
$V_F = V_{EC}$	I _F = 90 A; T _i = 25 (150) °C		(1,25)	2	V			
$V_{(TO)}$	$T_{i} = (150) ^{\circ}C$		(1)		V			
r _T	$T_{j} = (150) ^{\circ}C$		(5,5)		mΩ			
$R_{th(j-s)}$				1,2	K/W			
	under following conditions:							
I _{RRM}	I _F = 90 A; V _R = 400 V				Α			
Q_{rr}	$dI_F/dt = -100 A/\mu s$				μC			
E_{off}	V _{GE} = 0 V; T _j = 125 °C				mJ			
Mechanic	Mechanical data							
M1	mounting torque	2,3		2,5	Nm			
w			29		g			
Case	SEMITOP® 3		T 66					
	1							

SK 40 GB 067

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.