

Class AB Stereo Headphone Driver with Shutdown

DESCRIPTION

The EUA5544 is pin compatible with the BH3541/4, and functionally compatible with the TPA611x series and LM488 x series. As the EUA5544 contains advanced depop circuitry which eliminates pops & clicks during shutdown-on and shutdown-off, it can reduces a capacitor and resistor compared to Mute solution of other devices. The EUA5544 features an advantage of low-power consumption shutdown mode, activated by driving the shutdown pin with logic low. And it also allows fast turn-on with $1\mu F$ bypass capacitor (C_B).

The EUA5544 is an integrated class AB stereo headphone amplifier capable of delivering 68mW per channel of continuous average power into a 16Ω load or 35mW per channel into a 32Ω load from a 5V power supply. It also can operate from a 3V supply, capable of delivering 24 mW into a 32Ω load.

The EUA5544 further integrates a voltage divider inside the chip. Thus, the external resistors can be eliminated. The EUA5544 has a fixed gain of 6dB so that external gain setting is unnecessary.

FEATURES

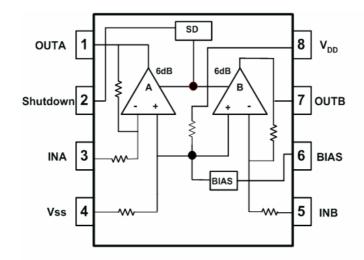
- No Switch On/Off Clicks
- Wide Power Supply Operation 2.5V–6V
- Mute Function Compatibility
- High Signal-to-Noise Ratio
- Low Distortion
- Large Output Voltage Swing
- Excellent Power Supply Ripple Rejection
- High Crosstalk Immunity > 85dB
- Low Quiescent Current
- Ultra-low Shutdown Current ...0.02μA typical
- Short-circuit Protection
- Integrated Voltage Divider (V_{DD}/2) to Eliminate External Resistors
- Available in SOP-8
- RoHS Compliant and 100% Lead (Pb)-Free

APPLICATIONS

- Headphone Amplifier for CD-ROMs
- Portable Audio Equipment

Typical Application Circuit

1

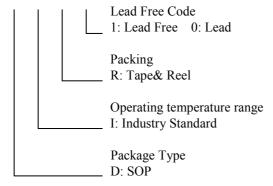

Pin Configurations

Package Type	Pin Configurations		
		TOP VIEW	
	OUTA 1	8 V _{DD}	
EUA5544 (Plastic SOP-8)	Shutdown 2	7 ОИТВ	
(1 lastic 501 -8)	INA 3	6 BIAS	
	V _{ss} 4	5 INB	

Pin Description

PIN	I/O	DESCRIPTION	
OUTA	О	A channel output pin	
Shutdown	I	Chip disable control input, low active and high for normal operating	
INA	I	A channel input terminal	
V_{SS}		Power ground pin	
INB	I	B channel input terminal	
BIAS	I	Right channel bias input pin	
OUTB	О	B channel output pin	
$V_{ m DD}$		Power input pin	

Block Diagram


EUTECH MICROELECTRONICS

DS5544 Ver 2.4 Oct.2007

Ordering Information

Order Number	Package Type	Marking	Operating Temperature range
EUA5544DIR1	SOP-8	xxxxx EUA5544	-40 °C to 85°C

EUA5544

Absolute Maximum Ratings

Input voltage	7V
Maximum Junction Temperature	150°C
Storage Temperature Range	-60°C to150°C
Power Dissipation $P_D(a)T_A=25$ °C	
SOP-8	0.625W
Package Thermal Resistance	
SOP-8, ja	160°C /W
Electrostatic Discharge	-3000 to $3000V^{(1)}$
·	-200 to 200V(2)

Notes: (1) Human body mode: C=100pF, R=1500Ω, 3 positive pulses plus 3 negative pulses

(2) Machine mode: C=200pF, L=0.5mH, R=0 Ω , 3 positive pulses plus 3 negative pulses

Electrical Characteristics VDD = 5V

Vin = -6dBV, RL = 32Ω , f = 1KHz, CB = 1μ F, TA = 25° C (unless otherwise specified)

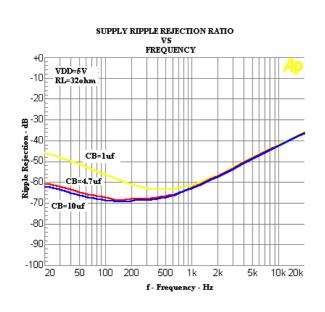
Cymbol	Parameter	Conditions	EUA5544			Unit	
Symbol	rarameter	Conditions	Min.	Typ.	Max.	Omt	
VDD	Supply Voltage		2.5	5.0	6.0	V	
IQ	Quiescent Current	Vin = 0V		3.5	5	mA	
ISD	Shutdown Current	VSD = GND		0.02		μA	
VSDIH	Shutdown Voltage Input High			1.8		V	
VSDIL	Shutdown Voltage Input Low			0.4		V	
GVCL	Differential Channel Voltage Gain		-0.5	0	0.5	dB	
GVCL	Voltage Gain		4	6	8	dB	
THD+N	Total Harmonic Distortion plus Noise	BW < 80KHz		0.02	0.1	%	
Po	Output Power	$RL = 32\Omega$, THD+N < 0.1%, BW < 80KHz		31		mW	
ro	Output Fower	$RL = 16\Omega$, THD+N < 0.1%, BW < 80KHz		62		mW	
VN	Output Noise Voltage	BW = 20~20KHz		-95		dBV	
CS	Channel Separation	f = 20~20KHz		90		dB	
ATT	Shutdown Attenuation	Vin = 1V, SD = Low		70		dB	
PSRR	Ripple Rejection	$F_{RR}=100Hz$, $V_{RR}=-20dBV$	55	60		dB	

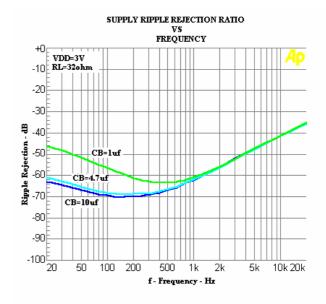
Electrical Characteristics VDD = 3.0V

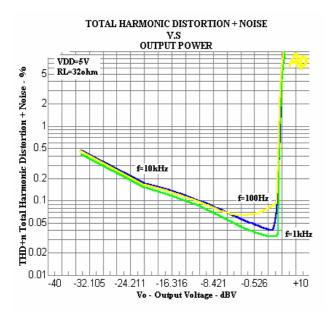
Vin = -6dBV, RL = 32Ω , f = 1KHz, CB = 1μ F, TA = 25° C (unless otherwise specified)

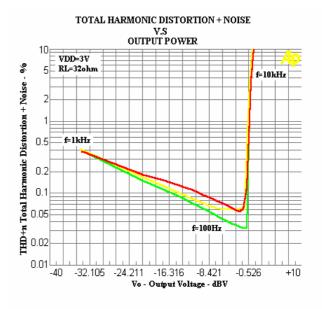
Symbol	Danamatan	Conditions	EUA5544			Unit
Symbol	Parameter	Conditions	Min.	Typ.	Max.	Ullit
IQ	Quiescent Current	Vin = 0V		2.4	3	mA
ISD	Shutdown Current	VSD = GND		0.02		μΑ
Po	Output Power	$RL = 32\Omega$, THD+N < 0.1%, BW < 80KHz		24		mW
		$RL = 16\Omega$, THD+N < 0.1%, BW < 80KHz		37		mW
VN	Output Noise Voltage	BW = 20 20KHz	-95	-94		dBV
PSRR	Ripple Rejection	$F_{RR}=100Hz, V_{RR}=-20dBV$	55	60		dB

Electrical Characteristics VDD = 2.5V

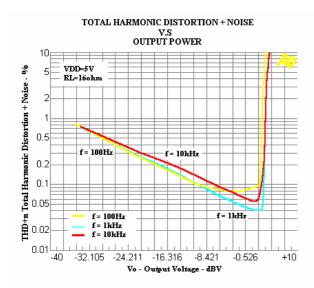

Vin = -6dBV, RL = 32Ω , f = 1KHz, CB = 1uF, TA = 25°C (unless otherwise specified)

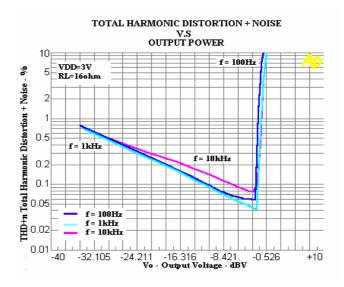

Symbol	Parameter	Conditions	EUA5544			Unit
Symbol	rarameter	Conditions	Min.	Тур.	Max.	Omt
IQ	Quiescent Current	Vin = 0V		2.2	3	mA
ISD	Shutdown Current	VSD = GND		0.02		μΑ
Po	Output Power	$RL = 32\Omega$, THD+N < 0.1%, BW < 80KHz		17		mW
		$RL = 16\Omega$, THD+N < 0.1%, BW < 80KHz		22		mW
VN	Output Noise Voltage	BW = 20~20KHz		-94		dBV
PSRR	Ripple Rejection	F_{RR} =100Hz, V_{RR} = -20dBV		60		dB

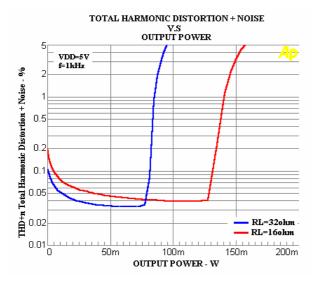


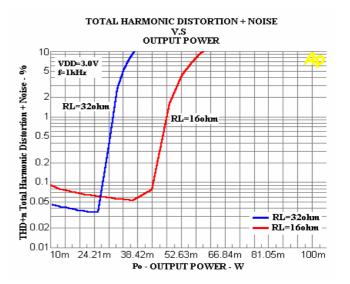

DS5544 Ver 2.4 Oct.2007 5

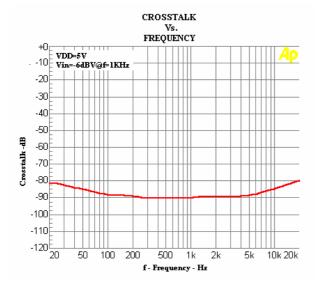
Typical Operating Characteristics

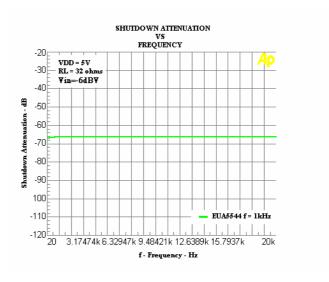


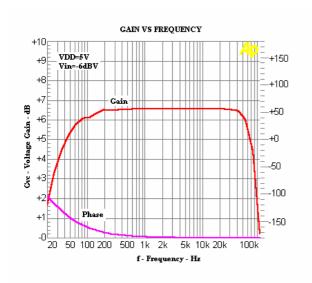












Application Note

Power Supply Decoupling, C_S

EUA5544 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents the oscillations causing by long lead length between the amplifier and the speaker.

Applications that employ a 5V regulator typically use a $10\mu F$ in parallel with a $0.1\mu F$ filter capacitors to stabilize the regulator's output, reduce noise on the supply line, and improve the supply's transient response. However, this does not eliminate the need for a local bypass capacitor connected between the EUA5544's supply pins and ground. A bypass capacitor value in the range of $0.1\mu F$ to $1\mu F$ is recommended for C_S .

Input Capacitor Ci

Amplifying the lowest audio frequencies requires a high value input coupling capacitor, Ci. A high value capacitor can be expensive and may compromise space efficiency in portable designs. In many cases, however, the headphones used in portable systems have little ability to reproduce signals below 60Hz. Applications using headphones with this limited frequency response reap little improvement by using a high value input capacitor.

In addition to system cost and size, turn-on time is affected by the size of the input coupling capacitor Ci. A larger input coupling capacitor requires more charge to reach its quiescent DC voltage. This charge comes from the output via the feedback. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on time can be minimized. A small value of Ci, $1\mu F$, is recommended.

Bypass Capacitor, C_B

Besides minimizing the input capacitor sizes, careful consideration should be paid to the bypass capacitor size. The bypass capacitor, $C_{\rm B}$, is the most critical component to minimize turn-on pops since it determines how fast the EUA5544 turns on. The slower the EUA5544's output ramp to their quiescent DC voltage (nominally $1/2\ V_{\rm DD}$), the smaller the turn-on pop.

Output Coupling Capacitors, Cc

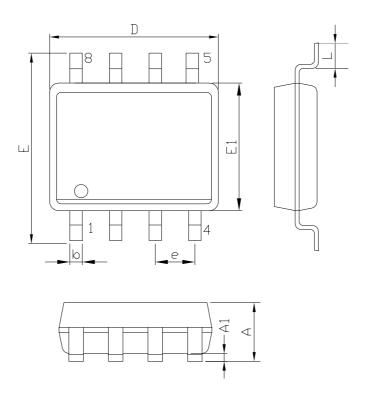
Typical single-supply audio amplifiers that drive single-ended (SE) headphones use a coupling capacitor on each SE output. This output coupling capacitor blocks the half-supply voltage to which the output amplifiers are typically biased and couples the audio signal to the headphones.

The output coupling capacitor and impedance of the load form a high-pass filter governed by equation.

fc (highpass)=
$$1/(2 \pi R_L C_C)$$
 (4)

For example, a $220\mu F$ capacitor with an 32Ω speaker would attenuate low frequencies below 22Hz. The main disadvantage, from a performance standpoint, is the load impedance is typically small, which drives the low-frequency corner higher degrading the bass response. Large values of C_C are required to pass low frequencies into the load.

Micro Power Shutdown


The voltage applied to the Shutdown pin controls the EUA5544 shutdown function. Activate micro-power shutdown by applying a logic-low voltage to the Shutdown pin. When active, the EUA5544 micro-power shutdown feature turns off the amplifier's bias circuitry, reducing the supply current.

There are a few ways to control the micro-power shutdown. These include using a single-pole, single-throw (SPST) switch, a microprocessor, or a microcontroller. When using a switch, connect an external pull-up resistor between the Shutdown pin and $V_{\rm DD}$. Connect the switch between the Shutdown pin and ground. Select normal amplifier operation by opening the switch. Closing the switch connects the Shutdown pin to ground, activating micro-power shutdown. The switch and resistor guarantee that the Shutdown pin will not float. This prevents unwanted state changes. In a system with a microprocessor or microcontroller, use a digital output to apply the control voltage to the Shutdown pin.

Packaging Information

SOP-8

SYMBOLS	MILLIMETERS		INCHES	
STNIBOLS	MIN.	MAX.	MIN.	MAX.
A	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
D	4.90 0.193		93	
Е	5.80	6.20	0.228	0.244
E1	3.90		0.153	
L	0.40	1.27	0.016	0.050
b	0.31	0.51	0.012	0.020
e	1.27		0.0	50

