FEATURES

1.8 V to 5.5 V single supply

Tiny $1.65 \mathrm{~mm} \times 1.65 \mathrm{~mm}$ package
Low on resistance: 1.3Ω at 5 V supply
High current-carrying capability
300 mA continuous current
500 mA peak current at 5 V
Rail-to-rail operation
Typical power consumption: <0.01 $\boldsymbol{\mu W}$
TTL/CMOS-compatible inputs

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN SWITCHES SHOWN
FOR A LOGIC 1 INPUT

Figure 1.

APPLICATIONS

Cellular phones

PDAs
MP3 players
Battery-powered systems
Audio and video signal routing
Modems
PCMCIA cards
Hard drives
Relay replacement

GENERAL DESCRIPTION

The ADG859 is a monolithic, CMOS SPDT (single pole, double throw) switch that operates with a supply range of 1.8 V to 5.5 V. It is designed to offer low on resistance of 2.3Ω maximum over the entire temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The ADG859 also has the capability of carrying large amounts of current, typically 300 mA at 5 V operation. These features make the ADG859 an ideal solution for applications that are space-constrained, such as handsets, PDAs, and MP3 players.

Each switch conducts equally well in both directions when on. The device exhibits break-before-make switching action, thereby preventing momentary shorting when switching channels.

The ADG859 is available in a tiny 6-lead SOT-66 package.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.

PRODUCT HIGHLIGHTS

1. Low on resistance: 2.3Ω maximum over the full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. High current-carrying capability.
3. Tiny 6-lead, $1.65 \mathrm{~mm} \times 1.65 \mathrm{~mm}$ SOT- 66 package.

ADG859

TABLE OF CONTENTS

Specifications.\qquad
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Test Circuits 10
Terminology 12
Outline Dimensions 13
Ordering Guide 13

REVISION HISTORY

6/05-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
On Resistance, Ron	1.3			Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$;
	2.1	2.2	2.3	Ω max	Figure 16
On Resistance Match Between Channels, Δ Ron	0.01			Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$;
	0.093	0.163	0.163	Ω max	Figure 16
On Resistance Flatness, Rflat (on)	0.32			Ω typ	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$;
	0.45	0.6	0.65	Ω max	Figure 16
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 0.02			nA typ	$\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$; Figure 17
Channel On Leakage, $\mathrm{l}_{\mathrm{s}}, \mathrm{I}_{\text {S }}(\mathrm{On})$	± 0.02			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 4.5 V ; Figure 18
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, Inı or linh	0.005			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	4			pF typ	
DYNAMIC CHARACTERISTICS²					
ton	8			ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	10	11	12	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$; Figure 19
toff	4.5			ns typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	6	6.5	7	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$; Figure 19
Break-Before-Make Time Delay, tввм	4			ns typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			1	ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=1.5 \mathrm{~V}$; Figure 20
Charge Injection	± 13			pC typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; Figure 21
Off Isolation	-78			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ $\text { Figure } 22$
Channel-to-Channel Crosstalk	-78			dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ Figure 23
-3 dB Bandwidth	125			MHz typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; Figure 24
Insertion Loss	-0.11			dB typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; Figure 24
Total Harmonic Distortion (THD + N)	0.062				$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{s}}=3 \mathrm{Vp-p} ; \text { Figure } 14 \end{aligned}$
C_{s} (Off)	18			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	45			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS ldo					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
	0.001		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or 5.5 V

[^0]
ADG859

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron Δ Ron	$\begin{aligned} & 3 \\ & 4.3 \\ & 0.03 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 0.15 \end{aligned}$	0 V to V_{DD} 4.7 0.15	V Ω typ Ω max Ω typ Ω max	$V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-100 \mathrm{~mA}$; Figure 16 $V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-100 \mathrm{~mA} ;$ Figure 16
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Channel On Leakage, ID, IS (On)	$\begin{aligned} & \pm 0.02 \\ & \pm 0.05 \end{aligned}$			nA typ nA typ	$\begin{aligned} & \hline V_{D D}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \text {; Figure } 17 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; Figure } 18 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, liň or lin Digital Input Capacitance, C_{IN}	0.005	± 0.1	$\begin{gathered} 2.0 \\ 0.8 \\ 0.7 \\ \pm 0.1 \end{gathered}$	\vee min V max V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{D D}=3 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{INL}} \text { or } \mathrm{V}_{\mathrm{INH}} \end{aligned}$
DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Time Delay, tввм Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth Insertion Loss Total Harmonic Distortion (THD + N) C_{s} (Off) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 11 \\ & 15 \\ & 6 \\ & 9.5 \\ & 5 \\ & \pm 7 \\ & \pm-78 \\ & \\ & -78 \\ & \\ & 125 \\ & -0.11 \\ & 0.1 \\ & 18 \\ & 46 \\ & \hline \end{aligned}$	16 10	17 11 1	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ dB typ \% pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} ; \text { Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \\ & \text { Figure } 22 \\ & \mathrm{~S} 1 \text { to } \mathrm{S} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=100 \mathrm{kHz} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{Vp} \mathrm{p} ; \text { Figure } 14 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ID	0.001		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \text { VDD }=3.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$

${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +7.0 V
Analog Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	
5 V Operation	500 mA
3 V Operation	460 mA
Continuous Current, S or D	
5 V Operation	300 mA
3 V Operation	275 mA
Operating Temperature Range Automotive $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
SOT-66 Package (4-Layer Board)	
θ_{JA} Thermal Impedance	$191^{\circ} \mathrm{C} / \mathrm{W}$
Lead-Free Reflow	
Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

${ }^{1}$ Overvoltages at S or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

Logic (IN)	Switch 2 (S2)	Switch 1 (S1)
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG859

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

IN 1		6 S2
$\mathrm{V}_{\mathrm{DD}} 2$	ADG859	5 D
GND 3	(Not to Scale)	4 S1

Figure 2. 6-Lead SOT-66 Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN	Logic Control Input.
2	VDD 2	Most Positive Power Supply Potential.
3	GND	Ground (0 V) Reference.
4	S1	Source Terminal. Can be an input or an output.
5	D	Drain Terminal. Can be an input or an output.
6	S2	Source Terminal. Can be an input or an output.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{S}\left(V_{D}\right) ; V_{D D}=5 \mathrm{~V} \pm 10 \%$

Figure 4. On Resistance vs. $V_{S}\left(V_{D}\right) ; V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 5. On Resistance vs. Source Voltage for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 6. On Resistance vs. Source Voltage for Different Temperatures, $V_{D D}=3 \mathrm{~V}$

Figure 7. Leakage vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 8. Leakage vs. Temperature, $V_{D D}=3 \mathrm{~V}$

Figure 9. Charge Injection vs. Source Voltage

Figure 10. ton/toff Times vs. Temperature

Figure 11. Bandwidth

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Total Harmonic Distortion + Noise

Figure 15. PSRR

ADG859

TEST CIRCUITS

Figure 16. On Resistance

Figure 17. Off Leakage

Figure 18. On Leakage

Figure 19. Switching Times, ton $^{\text {, }}$ toff

Figure 20. Break-Before-Make Time Delay, $t_{B B M}$

Figure 21. Charge Injection

Figure 22. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{v}_{\text {OUT }}}{\mathrm{v}_{\mathrm{S}}}$ 产
Figure 23. Channel-to-Channel Crosstalk

INSERTION LOSS $=20$ LOG $\frac{V_{\text {OUT }} \text { WITH SWITCH }}{V_{\text {OUT }} \text { WITHOUT SWITCH }}$
Figure 24. Bandwidth

ADG859

TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
IdD
Positive supply current.
GND
Ground (0 V) reference.
S
Source terminal. Can be an input or an output.

D

Drain terminal. Can be an input or an output.
IN
Logic control input.

$\mathrm{V}_{\mathrm{D}}(\mathrm{V} \mathrm{s})$

Analog voltage on the D and S terminals.
Ron
Ohmic resistance between the D and S terminals.
$\mathbf{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

Δ Ron

On resistance mismatch between any two channels.

Is (Off)

Source leakage current with the switch off.
I_{D} (Off)
Drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$

Channel leakage current with the switch on.
Vinl
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.
C_{D} (Off)
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{o}}, \mathrm{Cs}$ (On)
On switch capacitance. Measured with reference to ground.
C_{IN}
Digital input capacitance.
ton
Delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {Off }}$
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {Bbм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
-3 dB Bandwidth
The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of harmonic amplitudes plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

Figure 25. 6-Lead Small Outline Transistor Package [SOT-66] ($R Y-6-1$)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding 1
ADG859YRYZ-REEL 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package (SOT-66)	RY-6-1	02
ADG859YRYZ-REEL7 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package (SOT-66)	RY-6-1	02
ADG859BRYZ-REEL 2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package (SOT-66)	RY-6-1	04
ADG859BRYZ-REEL7 2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package (SOT-66)	RY-6-1	04

${ }^{1}$ Branding on this package is limited to two characters due to space constraints.
${ }^{2} Z=P b$-free part.

ADG859
NOTES

ADG859

NOTES

ADG859

NOTES

[^0]: ${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

