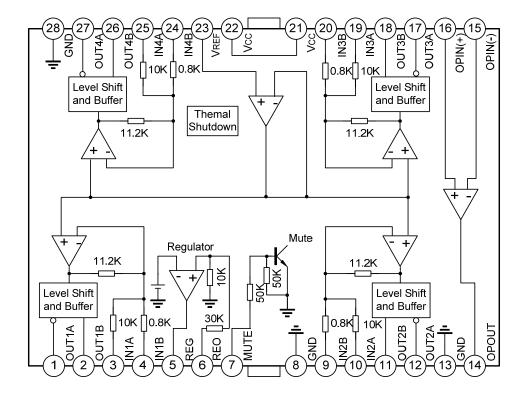


4-CH BTL DRIVER FOR CD PLAYER WITH 5V OUTPUT VOLTAGE

DESCRIPTION

The SA9258, an IC for CD players, has a 4-channel BTL driver, 5V regulator (attached PNP transistor required), standard operational amplifier, and internal reset output linked to an internal thermal shutdown circuit. The driver has gain adjustment input pins for each channel, allowing gain to be set to the desired value. Also, the internal level shift circuit helps reduce the number of attached components.

HSOP-28-375-0.8

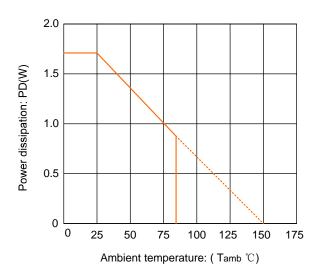

FEATURES

- * 1-phase, full-wave, linear DC motor driver
- * Gain is adjustable with an attached resistor.
- * Internal standard operational amplifier.
- * Internal 5V regulator. (required attached PNP transistor)
- * Internal thermal shutdown circuit with hysteresis capabilities.

ORDERING INFORMATION

Device	Package
SA9258	HSOP-28-375-0.8

BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATING (Tamb=25°C, unless otherwise specified)

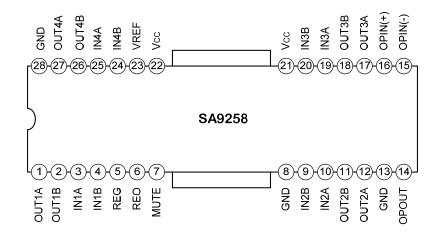
Characteristics	Symbol	Value	Unit
Supply Voltage	VDD	12	V
Power Dissipation	PD	1.7(Note)	W
Operating Temperature	Topr	-40~85	°C
Storage Temperature	Tstg	-55~150	°C
Maximum Output Current	Imax	1	Α

Note: 1. When mounted on 76mm x 114mm x 1.57mm PCB (Phenolic resin material).

- 2. Power dissipation reduces 13.6mW / °C for using above Tamb=25 °C
- 3. Do not exceed Pd and SOA (Safe Operating Area).

ELECTRICAL CHARACTERISTICS (Tamb=25°C, VCC=8.0V, unless otherwise specified)

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Operating Voltage	Vcc		5.5	8	12	V
A REGULATOR PART						
Regulator Output Voltage	VREG	IL=100mA	4.75	5	5.25	V
Load Regulation	ΔVRL	IL=0mA to 200mA	-40.0	0	10.0	mV
Line Regulation	ΔVcc	IL=200mA, Vcc=6 to 9V		0	20.0	mV
B DRIVER PART						
Quiescent Circuit Current	Iccq	V _I =0	5.5	9.5	13.5	mA
Input Offset Voltage	Vof	-	-5.0	0	5.0	mV
Output Offset Voltage	Voo	-	-30	0	30	mV
Maximum Sink Current	ISINK	RL=4Ω, VCC	0.5	0.8		Α
Maximum Source Current	Isou	RL=4Ω, GND	0.5	0.8		Α
Maximum Output Voltage	Vом	VI=2VRMS, 1kHz	2.5	3.0		V
Closed Loop Voltage Gain	AVF	Vi=0.1VRMS, 1kHz	4.5	6.5	7.5	dB


REV:1.7 2009.03.10

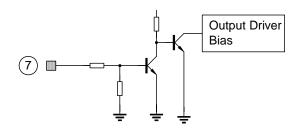
Http://www.silan.com.cn

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Ripple Rejection Ratio	RR	VI=-20dB, 120Hz		80.0		dB
Slew Rate	SR	100Hz, squarewave	1.0	2.0		V/μs
C OP AMP						
Input Offset Voltage	VOF1	-	-5.0	0	5.0	mV
Input Bias Current	IB1	-			300	nA
High Level Output Voltage	VOH1	-	6	-	-	V
Low Level Output Voltage	VOL1	-	-	-	1.8	V
Output Sink Current	ISINK1	RL=50Ω, VCC	10	40	-	mA
Output Source Current	ISOURCE1	RL=50Ω, GND	10	50	-	mA
Open Loop Voltage Gain	GVO1	VIN=-75dB, f=1KHz	65	78	-	dB
Ripple Rejection Ratio	R _{R1}	VIN=-20dB, 120Hz	50	70	-	dB
Slew Rate	SR	Square, Vout=2Vp-p, f=120KHz	0.5	1	-	V/μs
Common Mode Rejection Ratio	CMRR1	VIN=-20dB, 1KHz	70	84	-	dB

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Symbol	I/O	Description
1	OUT1A	0	Drive output
2	OUT1B	0	Drive output
3	IN1A	-	Drive input
4	IN1B	ı	Drive input
5	REG		Regulator
6	REO	0	Regulator output
7	MUTE	I	Mute
8	GND		Ground
9	IN2B	I	Drive input

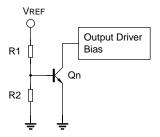


Pin No.	Symbol	I/O	Description
10	IN2A	I	Drive input
11	OUT2B	0	Drive output
12	OUT2A	0	Drive output
13	GND		Ground
14	OPOUT	0	Opamp output
15	OPIN (-)	I	Opamp input (-)
16	OPIN (+)	I	Opamp input (+)
17	OUT3A	0	Drive output
18	OUT3B	0	Drive output
19	IN3A	I	Drive input
20	IN3B	I	Drive input
21	Vcc		Supply voltage
22	Vcc		Supply voltage
23	VREF	I	2.5V bias voltage
24	IN4B	I	Drive input
25	IN4A	I	Drive input
26	OUT4B	0	Drive output
27	OUT4A	0	Drive output
28	GND		Ground

FUNCTIONAL DESCRIPTION

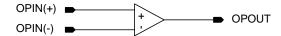
1. MUTE

Function	Mute	Operation conditions		
Thermal shutdown	0	T≥175°C		
External muting	0	V(mute)≤ 1.4V or open		

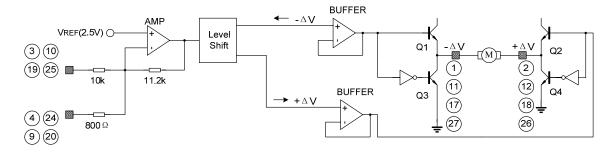


- 1) The circuit is muted during thermal shutdown and during the mute-on state. In each case, only the drivers are muted.
- 2) During mute, the output pins remain at the internal bias voltage, roughly (Vcc-Vf)/2.
- 3) When the mute pin #7 is open or the voltage of the mute pin #7 is below 0.5V, the mute circuit is activated so that the output circuit will be muted..
- 4) When the voltage of the mute pin is above 2V, the mute circuit is stopped and the output circuit is operated normally.

5) If the chip temperature rises above 175°C, then the TSD (Thermal Shutdown) circuit is activated and the output circuit is muted.


2. TSD (THERMAL SHUTDOWN)

- 1) The VREF is the output voltage of the band-gap-referenced biasing circuit and acts as the input voltage of the TSD circuit.
- 2) The base-emitter voltage of the TR, Qn is designed to turn-on at below voltage. VBE=VREF*R2/(R1+R2)=460mV
- 3) When the chip temperature rises up to 175°C, then the turn-on voltage of the Qn would drop down to 460mV. (Hysteresis: 25°) and, the Qn would turn on so the output circuit will be muted.

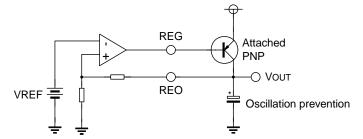

3. OP-AMP

OP-Amp is integrated in the IC for user convenuence.

Pins 14, 15 and 16 may be left open when the operational amplifier is not used.

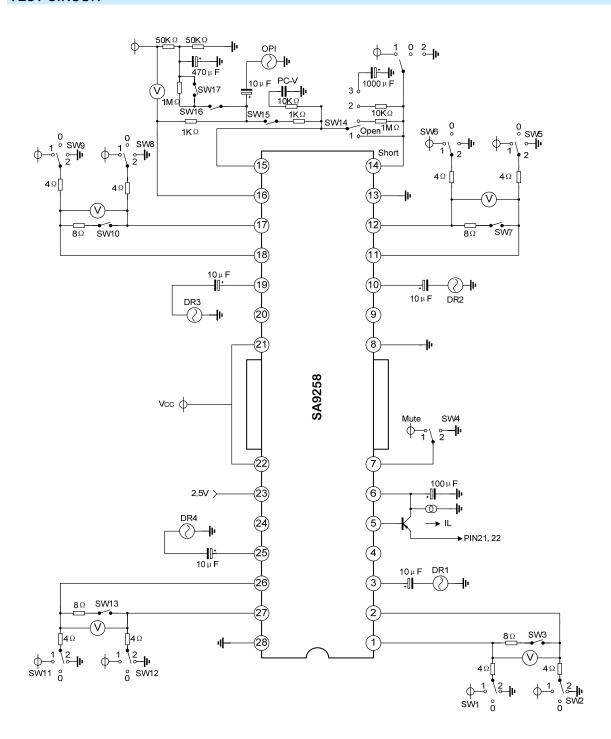
4. DRIVER

- 1) The voltage, VREF, is the reference voltage given by the BIAS voltage of the pin #23.
- 2) The input signal through the pin #3 is amplified by 10K/10K times and then fed to the level shift.
- 3) The level shift produces the current due to the difference between the input signal and the arbitrary reference signal. The current produced as $+\Delta V$ and $-\Delta V$ is fed into the driver buffer.
- 4) Driver buffer operates the power TR of the output stage according to the state of the input signal.
- 5) The output stage is the BTL driver and the motor is rotating in forward direction by operating TR Q1 and TR Q4. on the other hand, if TR Q2 and TR Q3 is operating, the motor is rotating in reverse direction.

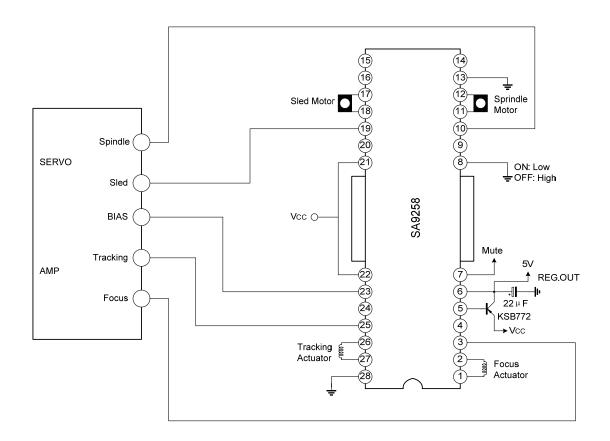

- 6) When the input voltage through the pin #3 is below the VREF, then the direction of the motor in forward direction.
- 7) When the input voltage through the pin #3 is above the VREF, then the direction of the motor in reverse direction.
- 8) If it is desired to change the gain, then the pin #4 or #24 can be used.

5. RADIATION FIN IS CONNECTING TO THE INTERNAL GND OF THE PACKAGE.

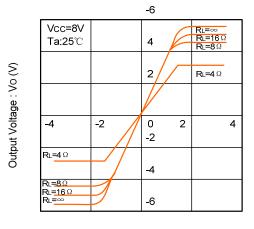
Connect the fin to the external GND.


6. REGULATOR

This is a typical series regulator that generates a reference voltage internally. A PNP low saturation type transistor must be connected.



TEST CIRCUIT



TYPICAL APPLICATION CIRCUIT

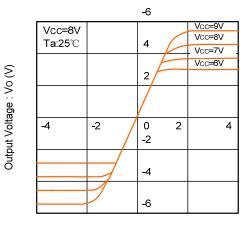

ELECTRICAL CHARACTERISTICS CURVES

Fig.1 Driver I/O characteristics (variable load)

Input Voltage :VIN (V)

Fig.2 Driver I/O characteristics (variable power supply)

Input Voltage :VIN (V)

Fig. 3 Power supply voltage vs. output offset voltage

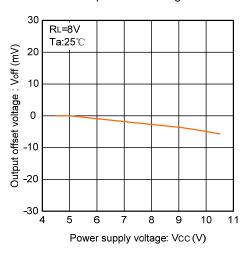


Fig. 5 Regulator voltage vs. temperature

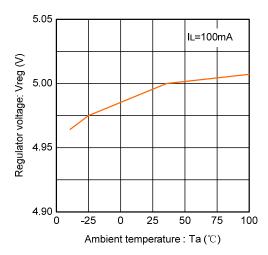


Fig. 7 Operational amplifier vs. open loop

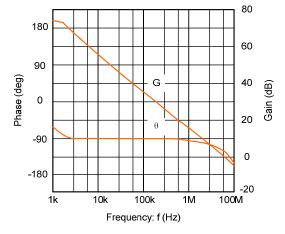


Fig. 4 Driver gain vs. temperature (RIN connected via gain adjustment pin)

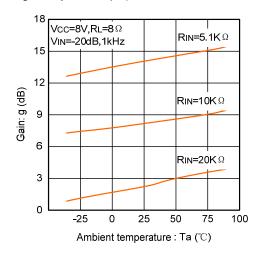
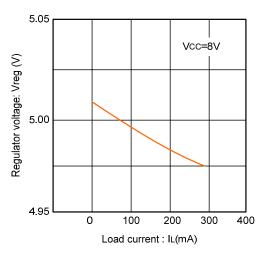
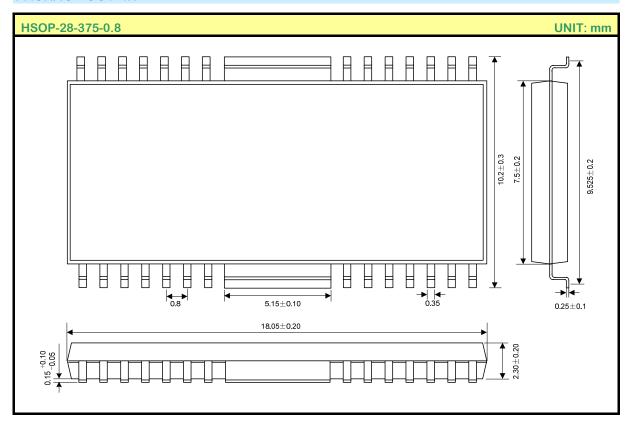




Fig. 6 Load current vs. regulator voltage

PACKAGE OUTLINE

Disclaimer:

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without further notice!
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products
 in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety
 standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products
 could cause loss of body injury or damage to property.
- Silan will supply the best possible product for customers!