

- Ideal for 390.0 MHz Transmitters
- Very Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RF1355 is a true one-port. surface-acoustic-wave (SAW) filter in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmiters operating at 390.0 MHz.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+5	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

RF1355

390.0 MHz SAW Filter

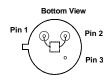
Electrical Characteristics

	Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Nominal Frequency		f _C	1, 2	389.900		390.100	MHz
	Tolerance from 390.0 MHz	Δf_{C}	1, 2			±100	kHz
Insertion Loss		IL	1			5.0	dB
3 dB Bandwidth		BW ₃	1, 2	330		550	kHz
Rejection	at fc -21.4 MHz (Image)		1	40			dB
	at fc -10.7 MHz (LO)		'	15			ub
Temperature	Operating Case Temperature	T _C		-35		+85	°C
	Turnover Temperature	T _O	3,4		25		°C
	Turnover Frequency	f _O	3,4		f _C		MHz
	Freq. Temp. Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	[fA]	5		≤10		ppm/yr
Lid Symbolization (in	Lid Symbolization (in addition to Lot and / or Date Codes) RFM RF1355						

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

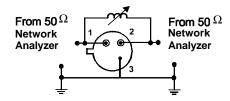
- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The center frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR ≤ 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is less than the resonator f_C.
- 3. One or more of the following United States patents apply: 4,454,488 and 4,616,197 and others pending.
- 4. Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 7. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- 8. Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 FTC (T_O -T_C)²]. Typically, oscillator T_O is 20°C less than the specified resonator T_O.
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_O.

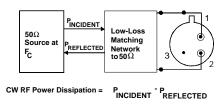

RF Monolithics, Inc. Phone: (972) 233-2903 Fax: (972) 387-8148 RFM Europe Phone: 44 1963 251383 Fax: 44 1963 251510 ©1999 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.

E-mail: info@rfm.com http://www.rfm.com RF1355-010505 Page 1 of 2

Electrical Connections

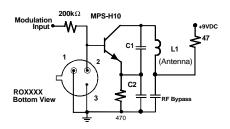
This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.


Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

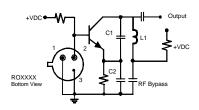

Typical Test Circuit

The test circuit inductor, $L_{\text{TEST}},$ is tuned to resonate with the static capacitance, C_{O} at $F_{\text{C}}.$

Electrical Test:

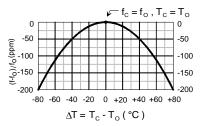


Power Test:

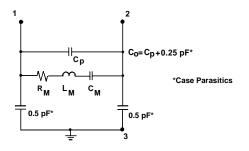


Typical Application Circuits

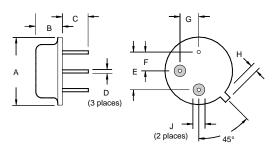
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millimeters		Inches	
	Min	Max	Min	Max
Α		9.30		0.366
В		3.18		0.125
С	2.50	3.50	0.098	0.138
D	0.46 Nominal		0.018 Nominal	
E	5.08 Nominal		0.200 Nominal	
F	2.54 Nominal		0.100 Nominal	
G	2.54 Nominal		0.100 Nominal	
Н		1.02		0.040
J	1.40		0.055	