

MOS FET Relay

G3VM-S1

MOS FET Relay for Switching Minute and Analog Signals in Low-profile Case (2.1 mm in height)

■ Switches minute signals and analog signals.

■ Switches AC and DC.

■ Load voltage: 60 V.

■ Low ON-resistance: 2 Ω.

■ UL/CSA approval pending.

■ Appearance

Note: "G3VM" is not printed on the actual product.

Ordering Information

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Taping quantity
SPST-NO	Surface-mounting terminals	60 VAC	G3VM-S1	100	
			G3VM-S1(TR)		2,500

Application Examples

- · Electronic automatic exchange systems
- · Measuring control systems
- Datacoms

Specifications

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Conditions
Input	LED forward current	I _F	50 mA	
	LED forward current reduction rate	ΔI _F /°C	-0.5 mA/°C	Ta ≥ 25°C
	Repetitive peak LED forward current	I _{FP}	1 A	100-µs pulses, 100 pps
	LED reverse voltage	V_R	5 V	
	Permissible loss	Pin	50 mW	
	Connection temperature	T_{J}	125°C	
Output	Load voltage	V_{OFF}	60 V	AC peak value
	Continuous load current	I _O	300 mA	
	Peak load current	I _{peak}	0.9 A	
	Output loss	P _{out}	180 mW	
	ON current reduction rate	ΔI _{ON} /°C	−3 mA/°C	Ta ≥ 25°C
Total permissible loss		P _T	230 mW	
Dielectric strength between I/O terminals (See note.)		V_{I-O}	1,500 Vrms	AC, 1 min
Insulation resistance		R _{I-O}	$5 \times 10^{10} \Omega$	V _S = 500 V, ambient operating humidity ≤ 60%
Storage temperature		Tstg	−55 to 100°C	
Ambient operating temperature		Та	-40 to 85°C	

Note The dielectric strength between I/O terminals was measured with voltage applied to all of the input pins and all of the output pins.

■ Electrical Performance (Ta = 25°C)

Item		Symbol	Minimum	Standard	Maximum	Conditions
Input	LED forward current	V _F	1.0 V	1.15 V	1.3 V	I _F = 10 mA
	Reverse current	I _R			10 μA	V _R = 5 V
	Capacity between terminals	C _T		30 pF		V = 0, f = 1 MHz
Output	Maximum resistance with output ON	R _{ON}		1.4 Ω	2 Ω	$I_{ON} = 300 \text{ mA}, I_F = 5 \text{ mA}$
	Current leakage when the relay is closed	I _{LEAK}			1 μΑ	V _{OFF} = 60 V
Turn-ON time		T _{ON}		0.9 ms	2 ms	R _L = 200 Ω
Turn-OFF time		T _{OFF}		0.1 ms	1 ms	(See note.) V _{DD} = 20 V, I _F = 5 mA
Floating capacity between I/O terminals		C _{I–O}		0.8 pF		V _S = 0 V, f = 1 MHz

Note The operate and release time were measured in the way shown below.

■ Recommended Operating Conditions

Item	Symbol	Minimum	Standard	Maximum
Operating voltage	V_{DD}			48 V
Forward current	I _F	5 mA	7.5 mA	25 mA
Continuous load current	Io			300 mA
Operating temperature	Topr	−20°C		65°C

Dimensions

Note All units are in millimeters unless otherwise indicated.

G3VM-S1

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-S1

Installation

■ Terminal Arrangement/Internal Connection (Top View)

G3VM-S1

Precautions

—! WARNING

Be sure to turn OFF the power when wiring the Relay, otherwise an electric shock may be received.

—! WARNING

Do not touch the charged terminals of the SSR, otherwise an electric shock may be received.

—! Caution

Do not apply overvoltage or overcurrent to the I/O circuits of the SSR, otherwise the SSR may malfunction or burn.

—! Caution

Be sure to wire and solder the Relay under the proper soldering conditins, otherwise the Relay in operation may generate excessive heat and the Relay may burn.

■ Correct Use

Typical Relat Driving Circuit Examples c-Mos

Transistor

Use the following formula to obtain the LED current limiting resistance value to assure that the relay operates accurately.

$$R_1 = \frac{V_{CC} - V_{OL} - V_F (ON)}{5 \text{ to 20 mA}}$$

Use the following formula to obtain the LED forward voltage value to assure that the relay releases accurately.

 $V_{F(OFF)} = V_{CC} - V_{OH} < 0.8 \text{ V}$

Protection from Surge Voltage on the Input Terminals

If any reversed surge voltage is imposed on the input terminals, insert a diode in parallel to the input terminals as shown in the following circuit diagram and do not impose a reversed voltage value of 3 V or more.

Surge Voltage Protection Circuit Example

Protection from Spike Voltage on the Output Terminals

If a spike voltage exceeding the absolute maximum rated value is generated between the output terminals, insert a C-R snubber or clamping diode in parallel to the load as shown in the following circuit diagram to limit the spike voltage.

Spike Voltage Protection Circuit Example

Unused Terminals (6-pin only)

Terminal 3 is connected to the internal circuit. Do not connect anything to terminal 3 externally.

Pin Strength for Automatic Mounting

In order to maintain the characteristics of the relay, the force imposed on any pin of the relay for automatic mounting must not exceed the following.

Load Connection

Do not short-circuit the input and output terminals while the relay is operating or the relay may malfunction.

AC Connection

DC Single Connection

DC Parallel Connection

Solder Mounting

Maintain the following conditions during manual or reflow soldering of the relays in order to prevent the temperature of the relays from rising.

- Pin Soldering Solder each pin at a maximum temperature of 260°C within 10 s.
- 2. Reflow Soldering
 - a. Solder each pin at a maximum temperature of 260°C within 10 s.
 - b. Make sure that the ambient temperature on the surface of the resin casing is 240°C max. for 10 s maximum.
 - c. The following temperature changes are recommendable for soldering.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Cat. No. K116-E1-1 In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation

Electronics Components Company

Electronic & Mechanical Components Division H.Q. Low Signal Relay Division 2-1, 2-chome, Nishikusatsu, Kusatsu-city, Shiga-pref., 525-0035 Japan

Phone: (81)77-565-5481 Fax: (81)77-565-5581

Printed in Japan 0201-2M (0201) (A)