PD57030-E PD57030S-E # RF POWER transistor, LDMOST plastic family N-Channel enhancement-mode lateral MOSFETs #### **General features** - Excellent thermal stability - Common source configuration - P_{OUT} = 30W with 14dB gain @ 945MHz / 28V - New RF plastic package #### Description The PD57030 is a common source N-Channel, enhancement-mode lateral Field-Effect RF power transistor. It is designed for high gain, broad band commercial and industrial applications. It operates at 28 V in common source mode at frequencies up to 1 GHz. PD57030 boasts the excellent gain, linearity and reliability of ST's latest LDMOS technology mounted in the first true SMD plastic RF power package, PowerSO-10RF. PD57030's superior linearity performance makes it an ideal solution for base station applications. The PowerSO-10 plastic package, designed to offer high reliability, is the first ST JEDEC approved, high power SMD package. It has been specially optimized for RF needs and offers excellent RF performances and ease of assembly. Mounting recommendations are available in www.st.com/rf/ (look for application note AN1294) #### Pin connection #### Order codes | Part number | Package | Packing | |--------------|------------------------------|---------------| | PD57030-E | PowerSO-10RF (formed lead) | Tube | | PD57030S-E | PowerSO-10RF (straight lead) | Tube | | PD57030TR-E | PowerSO-10RF (formed lead) | Tape and reel | | PD57030STR-E | PowerSO-10RF (straight lead) | Tape and reel | ### **Contents** | 1 | Electrical data | 3 | |---|----------------------------|---| | | 1.1 Maximum ratings | 3 | | | 1.2 Thermal data | 3 | | 2 | Electrical characteristics | 4 | | | 2.1 Static | 4 | | | 2.2 Dynamic | 4 | | 3 | Impedance | 5 | | 4 | Typical performance | 6 | | 5 | Test circuit | 0 | | 6 | Package mechanical data | 2 | | 7 | Revision history | 7 | ### 1 Electrical data ### 1.1 Maximum ratings Table 1. Absolute maximum ratings $(T_{CASE} = 25^{\circ}C)$ | Symbol | Parameter | Value | Unit | |----------------------|---|-------------|------| | V _{(BR)DSS} | Drain-source voltage | 65 | V | | V _{GS} | Gate-source voltage | ±20 | V | | I _D | Drain current | 4 | Α | | P _{DISS} | Power dissipation (@ T _C = 70°C) | 52.8 | W | | T _J | Max. operating junction temperature | 165 | °C | | T _{STG} | Storage temperature | -65 to +150 | °C | #### 1.2 Thermal data Table 2. Thermal data | Symbol | Parameter | Value | Unit | |------------|------------------------------------|-------|------| | R_{thJC} | Junction - case thermal resistance | 1.8 | °C/W | ### 2 Electrical characteristics $$T_{CASE} = +25$$ °C #### 2.1 Static Table 3. Static | Symbol | | Min | Тур | Max | Unit | | | |----------------------|------------------------|------------------------|-----------|-----|------|-----|-----| | V _{(BR)DSS} | V _{GS} = 0 V | I _{DS} = 10mA | | 65 | | | V | | I _{DSS} | $V_{GS} = 0 V$ | V _{DS} = 28 V | | | | 1 | μΑ | | I _{GSS} | V _{GS} = 20 V | $V_{DS} = 0 V$ | | | | 1 | μΑ | | V _{GS(Q)} | V _{DS} = 28 V | $I_D = 50 \text{ mA}$ | | 2.0 | | 5.0 | V | | V _{DS(ON)} | V _{GS} = 10 V | $I_D = 3 A$ | | | 1.3 | | V | | 9 _{FS} | V _{DS} = 10 V | $I_D = 3A$ | | | 1.8 | | mho | | C _{ISS} | $V_{GS} = 0 V$ | V _{DS} = 28 V | f = 1 MHz | | 57 | | pF | | Coss | $V_{GS} = 0 V$ | V _{DS} = 28 V | f = 1 MHz | | 30 | | pF | | C _{RSS} | V _{GS} = 0 V | V _{DS} = 28V | f = 1 MHz | | 2.3 | | pF | ### 2.2 Dynamic Table 4. Dynamic | Symbol | | Test co | Min | Тур | Max | Unit | | |------------------|------------------------------------|--------------------------|-------------------------------------|------|-----|------|------| | P _{OUT} | V _{DS} = 28V | $I_{DQ} = 50 \text{ mA}$ | f = 945 MHz | 30 | | | W | | G _P | V _{DS} = 28V | $I_{DQ} = 50 \text{ mA}$ | P _{OUT} = 30 W f = 945 MHz | 13 | 14 | | dB | | η_{D} | V _{DS} = 28V | $I_{DQ} = 50 \text{ mA}$ | P _{OUT} = 30 W f = 945 MHz | 45 | 53 | | % | | Load
mismatch | V _{DS} = 28V
ALL PHASE | | P _{OUT} = 30 W f = 945 MHz | 10:1 | | | VSWR | # 3 Impedance Figure 1. Current conventions Table 5. Impedance data | Freq. (MHz) | Z _{IN} (Ω) | $Z_DL(\Omega)$ | |-------------|----------------------------|----------------| | 925 | 0.929 - j 0.315 | 2.60 + j 1.45 | | 945 | 0.809 - j 0.085 | 2.46 + j 0.492 | | 960 | 0.763 - j 0.428 | 2.35 + j 0.591 | ## 4 Typical performance Figure 2. Capacitance vs supply voltage Figure 3. Drain current vs gate source voltage Figure 4. Gate-source voltage vs case temperature #### PD57030S Figure 5. Output power vs input power Figure 6. Input return loss vs output power IRL (dB) -5 -10 -15 945 MHz -20 925 MHz -25 Vdd = 28V Idq = 50mA -30 2 10 50 0 20 30 40 Pout (W) Pout (W) 50 945 MHz 40 960 MHz 925 MHz 30 20 10 Vdd = 28V Idq = 50mA 0 0 0.5 1.5 1 Pin (W) Figure 7. Power gain vs output power Figure 8. Efficiency vs output power Figure 9. Output power vs bias current Figure 10. Efficiency vs bias current Figure 11. Output power vs drain voltage Figure 12. Efficiency vs drain voltage Figure 13. Output power vs gate-source voltage ### 5 Test circuit Figure 14. Test circuit schematic Table 6. Test circuit component part list | Component | Description | |-----------------|---| | C1, C8, C9, C13 | 47pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR | | C2, C7 | 0.8-8.0pF GIGA TRIM VARIABLE CAPACITOR | | C3, C4, C5, C6 | 7.5pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR | | C10 | 1000pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR | | C11, C15 | 0.1μF / 500V SURFACE MOUNT CERAMIC CHIP CAPACITOR | | C12 | 10μF / 50V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR | | C14 | 100pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR | | C16 | 220μF / 63V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR | | R1 | 18K Ω 1W SURFACE MOUNT CHIP RESISTOR | | R2 | 4.7MΩ 1W SURFACE MOUNT CHIP RESISTOR | | R3 | 120Ω 2W SURFACE MOUNT CHIP RESISTOR | | FB1, FB2 | SHIELD BEAD SURFACE MOUNT EMI | | L1, L2 | INDUCTOR, 5TURNS AIR WOUND #22AWG, ID=0.059[1.49], NYLON COATED MAGNET WIRE | Figure 15. Test circuit photomaster Figure 16. Test circuit ### 6 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com Table 7. PowerSO-10RF Formed lead (Gull Wing) Mechanical data | Dim. | mm. Inch | | | | | | |------|----------|--------|-------|-------|--------|--------| | | Min. | Тур. | Max. | Min. | Тур. | Max. | | A1 | 0 | 0.05 | 0.1 | 0. | 0.0019 | 0.0038 | | A2 | 3.4 | 3.5 | 3.6 | 0.134 | 0.137 | 0.142 | | A3 | 1.2 | 1.3 | 1.4 | 0.046 | 0.05 | 0.054 | | A4 | 0.15 | 0.2 | 0.25 | 0.005 | 0.007 | 0.009 | | а | | 0.2 | | | 0.007 | | | b | 5.4 | 5.53 | 5.65 | 0.212 | 0.217 | 0.221 | | С | 0.23 | 0.27 | 0.32 | 0.008 | 0.01 | 0.012 | | D | 9.4 | 9.5 | 9.6 | 0.370 | 0.374 | 0.377 | | D1 | 7.4 | 7.5 | 7.6 | 0.290 | 0.295 | 0.298 | | Е | 13.85 | 14.1 | 14.35 | 0.544 | 0.555 | 0.565 | | E1 | 9.3 | 9.4 | 9.5 | 0.365 | 0.37 | 0.375 | | E2 | 7.3 | 7.4 | 7.5 | 0.286 | 0.292 | 0.294 | | E3 | 5.9 | 6.1 | 6.3 | 0.231 | 0.24 | 0.247 | | F | | 0.5 | | | 0.019 | | | G | | 1.2 | | | 0.047 | | | L | 0.8 | 1 | 1.1 | 0.030 | 0.039 | 0.042 | | R1 | | | 0.25 | | | 0.01 | | R2 | | 0.8 | | | 0.031 | | | Т | 2 deg | 5 deg | 8 deg | 2 deg | 5 deg | 8 deg | | T1 | | 6 deg | | | 6 deg | | | T2 | | 10 deg | | | 10 deg | | Note: Resin protrusions not included (max value: 0.15 mm per side) Figure 17. Package dimensions Table 8. PowerSO-10RF Straight Lead Mechanical data | Dim. | mm. | | | n. mm. Inch | | | | |------|-------|--------|-------|-------------|--------|-------|--| | | Min. | Тур. | Max. | Min. | Тур. | Max. | | | A1 | 1.62 | 1.67 | 1.72 | 0.064 | 0.065 | 0.068 | | | A2 | 3.4 | 3.5 | 3.6 | 0.134 | 0.137 | 0.142 | | | A3 | 1.2 | 1.3 | 1.4 | 0.046 | 0.05 | 0.054 | | | A4 | 0.15 | 0.2 | 0.25 | 0.005 | 0.007 | 0.009 | | | а | | 0.2 | | | 0.007 | | | | b | 5.4 | 5.53 | 5.65 | 0.212 | 0.217 | 0.221 | | | С | 0.23 | 0.27 | 0.32 | 0.008 | 0.01 | 0.012 | | | D | 9.4 | 9.5 | 9.6 | 0.370 | 0.374 | 0.377 | | | D1 | 7.4 | 7.5 | 7.6 | 0.290 | 0.295 | 0.298 | | | Е | 15.15 | 15.4 | 15.65 | 0.595 | 0.606 | 0.615 | | | E1 | 9.3 | 9.4 | 9.5 | 0.365 | 0.37 | 0.375 | | | E2 | 7.3 | 7.4 | 7.5 | 0.286 | 0.292 | 0.294 | | | E3 | 5.9 | 6.1 | 6.3 | 0.231 | 0.24 | 0.247 | | | F | | 0.5 | | | 0.019 | | | | G | | 1.2 | | | 0.047 | | | | R1 | | | 0.25 | | | 0.01 | | | R2 | | 0.8 | | | 0.031 | | | | T1 | | 6 deg | | | 6 deg | | | | T2 | | 10 deg | | | 10 deg | | | Resin protrusions not included (max value: 0.15 mm per side) Note: Figure 18. Package dimensions SCALE 5,000 SCALE 5,000 SCALE 2,000 (§) 100 B 5,0±€,14 17,2±0,2 (*) ④ 18,8±0,2 ③ 14,3±0,2 (*)(2) 9.9±0.2 € a 😩 Marking area 'PART 1' 3,75±0,2 (*) @ @ (*) CRITICAL DIMENSIONS ® (*) 5,0±5, 10,000 © S.0±3.4 (*) 2'0#S'9 (*) Figure 19. Tube information **47/** P₂ -2.0±0.1 (I) Po -4.0±0.1 (II) T 0.30±0.05 Do ø1.55±0.05- Φ REF. 7.2 F(III) D1 Ø1.6±0.1 R1.0 Typical 7.80 ±0.1 REF. 8.40 SECTION Y-Y 9.90±0.10 18.00 +/- 0.1 9.80 +/- 0.1 4.25 +/- 0.1 3.70 +/- 0.1 11.50 +/- 0.1 24.00 +/- 0.3 Bo Ko K1 조 S € SECTION X-X P 1 Figure 20. Reel information # 7 Revision history Table 9. Revision history | Date | Revision | Changes | |-------------|----------|------------------| | 07-Aug-2006 | 1 | Initial release. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com