Features

- Universal specification
- Operating voltag0e: $2.0 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Low standby current
- Lowmemoryretentioncurrent: $0.1 \mu \mathrm{~A}$ (typ.)
- Tone/pulse switchable
- Interface with LCD driver
- 32 digits for redialing
- 32 digits for the SA memory dialing
- One-key redialing
- Pause and P \rightarrow T key for PBX
- 3.58 MHz crystal or ceramic resonator
- Hand-free control
- Hold-line control
- Pause, $P \rightarrow T$ can be saved for redialing
- On-hook store function
- Keytone function
- Lock function
- Resistor options
- M/B ratio
- Flash function and flash time
- Pause and $P \rightarrow T$ duration
- Pulse number
- Inter-digit pause time for 10pps
- Memory number: 22 memories
- HT9320A/B/H/K/L-X: 28-pin DIP package HT9320C: 22-pin SKDIP package

General Description

The HT9320 series tone/pulse dialers are CMOS LSI for telecommunication systems. They are designed to meet various dialing specifications through resistor option matrix.
The HT9320 series are offered in six different versions. The different functions of the six versions are listed in the selection table. The HT9320A, HT9320H versions provide the on-hook store function; the HT9320B version provides the LCD interface function; the HT9320K version provides the keytone function; the HT9320L version provides both the LCD interface function and IDD
lock function. The six versions also supply the hold-line and hand-free functions, which are suitable for feature phone applications.

HT9320 series provide SA, Redial and 20 one-touch/two-touch memory dialing. If the keyboard includes M1~M20 keys it can be used as one-touch memory dialing. Otherwise, it works as two-touch (PAGE \rightarrow M1~M10) or three-touch $(A \rightarrow$ PAGE $\rightarrow 0 \sim 9$) memory dialing for speed dialing in either pulse or tone mode.

Selection Table

Function Part No.	Memory Dialing	HoldLine	HandFree	LCD Interface	Flash Function	$\begin{gathered} \text { Flash } \\ \text { Time } \\ \text { (ms) } \end{gathered}$	Pulse No.	Tone Dura- tion (ms)	Inter- Tone- Pause (ms)	$\begin{gathered} M / B \\ \text { Pin } \end{gathered}$	$\begin{aligned} & \text { IDD } \\ & \text { Lock } \end{aligned}$	KeyTone Output	On- Hook Store	Package
HT9320A	$\begin{array}{\|c} \text { SA, R } \\ \text { M1~M20 } \end{array}$	\checkmark	\checkmark	-	Control	600	$\begin{gathered} \mathrm{N}, \mathrm{~N}+1 \\ 10-\mathrm{N} \end{gathered}$	82.5	85.5	\checkmark	-	-	\checkmark	28 DIP
					Digit	600/300/98								
HT9320B	$\begin{gathered} \text { SA, R } \\ \text { M1~M20 } \end{gathered}$	\checkmark	\checkmark	\checkmark	Control	600	$\begin{array}{\|c} \mathrm{N}, \mathrm{~N}+1 \\ 10-\mathrm{N} \end{array}$	82.5	85.5	-	-	-	-	28 DIP
					Digit	600/300/98								
HT9320C	$\begin{gathered} \text { SA, R } \\ \text { M1~M20 } \end{gathered}$	-	-	-	Control	600	$\begin{gathered} \mathrm{N}, \mathrm{~N}+1 \\ 10-\mathrm{N} \end{gathered}$	82.5	85.5	-	-	-	-	22SKDIP
					Digit	600/300/98								
HT9320H	$\begin{gathered} \text { SA, R } \\ \text { M1~M20 } \end{gathered}$	\checkmark	\checkmark	-	Digit	600/100	N	82.5	85.5	\checkmark	-	-	\checkmark	28 DIP
HT9320K	$\begin{gathered} \text { SA, R } \\ \text { M1~M20 } \end{gathered}$	\checkmark	\checkmark	-	Control	600	$\begin{gathered} \mathrm{N}, \mathrm{~N}+1 \\ 10-\mathrm{N} \end{gathered}$	82.5	85.5	-	-	\checkmark	-	28 DIP
					Digit	600/300/98								
HT9320L	$\begin{array}{\|c\|} \hline \text { SA, R } \\ \text { M1~M20 } \end{array}$	\checkmark	\checkmark	\checkmark	Control	600	$\begin{gathered} \mathrm{N}, \mathrm{~N}+1 \\ 10-\mathrm{N} \end{gathered}$	82.5	85.5	-	\checkmark	-	-	28 DIP
					Digit	600/300/98								
HT9320L-X	The same as HT9320L, but the voltage polarity of the row group and the column group are reversed.													

Block Diagram

Pin Assignment

Keyboard Information

HT9320A/B/C/K/L

- One-touch memory keyboard

- Two-touch memory keyboard

- Three-touch memory keyboard

HT9320H

- One-touch memory keyboard

- Two-touch memory keyboard

- Three-touch memory keyboard

Memory dialing vs. keyboard form table

Dialing Output	One-Touch Memory Keyboard	Two-Touch Memory Keyboard	Three-Touch Memory Keyboard
M1~M10	$\mathrm{M} 1 \sim \mathrm{M} 10$	A $\quad \mathrm{a}(\mathrm{a}=1 \sim 9,0)$	
$\mathrm{M} 11 \sim \mathrm{M} 20$	$\mathrm{M} 11 \sim \mathrm{M} 20$	PAGE	$\mathrm{Ma}(\mathrm{Ma}=\mathrm{M} 1 \sim \mathrm{M} 10)$
	A PAGE	$\mathrm{a}(\mathrm{a}=1 \sim 9,0)$	

Pin Description

Pin Name	1/0	Internal Connection	Description
$\frac{\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 8}}{\mathrm{R} 1} \sim \overline{\mathrm{R} 5}$	I/O	CMOS IN/OUT	These pins form a 5×8 keyboard matrix which can perform keyboard input detection and dialing specification setting functions. When on-hook (HKS=high) all the pins are set high. While off-hook the column group ($\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 8}$) remains low and the row group $(\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 5})$ is set high for key input detection. For the HT9320L-X, the column group remains high and the row group is set low for key input detection. An inexpensive single contact 5×8 keyboard can be used as an input device. Pressing a key connects a single column to a single row, and actuates the system oscillator that results in a dialing signal output. If more than two keys are pressed at the same time, no response occurs. The key-in debounce time is 20 ms . Refer to the keyboard information for keyboard arrangement and to the functional description for dialing specification selection.
X1	1		The system oscillator consists of an inverter, a bias resistor and the nece
X2	0	OSCILLATOR	ramic resonator to the X1 and X2 terminals can implement the oscillator function. The oscillator is turned off in the standby mode, and is actuated whenever a keyboard entry is detected.
$\overline{\text { XMUTE }}$	0	NMOS OUT	$\overline{\text { XMUTE }}$ is an NMOS open drain structure pulled to VSS during dialing signal transmission. Otherwise, it is an open circuit. XMUTE is used to mute the speech circuit when transmitting the dial signal.
$\overline{\mathrm{HKS}}$	1	CMOS IN	This pin is used to monitor the status of the hook-switch and its combination with HFI/HDI can control the PO pin output to make or break the line. $\overline{\mathrm{HKS}}=\mathrm{VDD}$: On-hook state ($\overline{\mathrm{PO}}=\mathrm{low}$). Except for HFI/HDI (hand-free/hold-line control input), other functions are all disabled. HKS=VSS: Off-hook state ($\overline{\mathrm{PO}}=$ high). The chip is in the stand-by mode and ready to receive the key input.
$\overline{\mathrm{PO}}$	0	CMOS OUT	This pin is a CMOS output structure which by receiving the $\overline{\mathrm{HKS}}$ and HFO/HDO signals, control the dialer to connect or disconnect the telephone line. $\overline{\mathrm{PO}}$ outputs a low to break line when $\overline{\mathrm{HKS}}$ is high (on-hook) and HFO/HDO is low. $\overline{\mathrm{PO}}$ outputs a high to make line when $\overline{\mathrm{HKS}}$ is low (off-hook) or HFO is high or HDO is high. During the off-hook state, this pin also outputs the dialing pulse train in pulse mode dialing. While in the tone mode, this pin is always high.
MODE	I/O	CMOS IN/OUT	This is a three-state input/output pin, used for dialing mode selection, either Tone mode or Pulse mode, 10pps/20pps MODE=VDD: Pulse mode, 10pps MODE=OPEN: Pulse mode, 20pps MODE=VSS: Tone mode During the pulse mode dialing, switching this pin to the tone mode changes the subsequent digit entry to the tone mode. When the chips are in tone mode, switching to the pulse mode will also be recognized.
DTMF	0	CMOS OUT	This pin is active only when the chip transmits tone dialing signals. Otherwise, it always outputs a low. The pin outputs tone signals to drive the external transmitter amplifier circuit. The load resistor should not be less than $5 \mathrm{k} \Omega$.

Pin Name	1/0	Internal Connection	Description
HDI	1	CMOS IN Pull-high	This pin is a Schmitt trigger input structure. Active low. Applying a negative going pulse to this pin can toggle the HDO output once. An external RC network is recommended for input debouncing. The pull-high resistance is $200 \mathrm{k} \Omega$ typ.
HDO	0	CMOS OUT	The HDO is a CMOS output structure. Its output is toggle- controlled by a negative transition on $\overline{\mathrm{HDI}}$. When HDO is toggled high, $\overline{\mathrm{PO}}$ keeps high to hold the line. The hold function can be released by setting HFO high or by an on-off hook operation or by another $\overline{\mathrm{HDI}}$ input. Refer to the functional description for the hold-line function.
HFI	1	CMOS IN Pull-low	This pin is a Schmitt trigger input structure. Active high. Applying a positive going pulse to HFI can toggle the HFO once and hence control the hand-free function. An external RC network is recommended for input debouncing. The pull-low resistance of HFl is $200 \mathrm{k} \Omega$ typ.
HFO	0	CMOS OUT	The HFO is a CMOS output structure. Its output is toggle- controlled by a positive transition on the HFI pin. When HFO is high, the hand-free function is enabled and $\overline{\mathrm{PO}}$ outputs a high to connect the line. The hand-free function can be released by an on-off-hook operation or by another HFI input or by setting HDO high. Refer to the functional description for the hand-free function operation.
DOUT	0	NMOS OUT	NMOS open drain output pin. It outputs the BCD code of the dialing digits to the LCD driver chip (HT16XX series) or MCU for dialing number display. Refer to the functional description for the detailed timing.
CLOCK	0	NMOS OUT	NMOS open drain output. When dialing, it outputs a series of pulse trains for DOUT data synchronization. DOUT data is valid at the falling edge of clock.
VDD	-	-	Positive power supply, 2.0V $\sim 5.5 \mathrm{~V}$ for normal operation
VSS	-	-	Negative power supply, ground
HST	1	CMOS IN Pull-low (HT9320A) CMOS IN (HT9320H)	On-hook store enable input HST=VDD: On-hook store (HT9320A/H) HST=Floating: Off-hook store (HT9320A) HST=VSS: Off-hook store (HT9320H) The Pull-low resistance is $200 \mathrm{k} \Omega$ typ.
$\overline{M / B}$	1	CMOS IN Pull-high (HT9320A) CMOS IN (HT9320H)	Make/Break ratio selection $\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VSS}: 33.3 / 66.6$ (HT9320A) $\overline{\text { M/B }}=$ Floating: $40 / 60$ (HT9320A) $\overline{\text { M/B }}=$ VDD: $33.3 / 66.6$ (HT9320H) $\overline{M / B}=$ VSS: $40 / 60$ (HT9320H) The pull-high resistance is $200 \mathrm{k} \Omega$ typ.
KT	0	CMOS OUT	Keytone output pin. Outputs a 1.2 kHz tone carrier for 34 ms each time a key is pressed in the pulse mode.

Approximate internal connection circuits

CMOS IN/OUT

Absolute Maximum Ratings

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics
$\mathrm{fosc}=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions			Min.	Typ.	Max.	Unit
		V DD		Conditions				
$V_{D D}$	Operating Voltage	-		-	2	-	5.5	V
IDD	Operating Current	2.5 V	Pulse	Off-hook, Keypad entry, no load	-	0.2	1	mA
			Tone		-	0.6	2	mA
IStB	Standby Current	1V	On-hook, no load No entry		-	-	1	$\mu \mathrm{A}$
V_{R}	Memory Retention Voltage	-		-	1	-	5.5	V
I_{R}	Memory Retention Current	1V	On-hook		-	0.1	0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-		-	V_{SS}	-	$0.2 \mathrm{~V}_{\text {DD }}$	V
V_{IH}	Input High Voltage	-		-	0.8V VD	-	V_{DD}	V
Іхмо	$\overline{\text { XMUTE Leakage Current }}$	-	V $\overline{\text { XMUT }}$ No en	$\begin{aligned} & =12 \mathrm{~V} \\ & \mathrm{y} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
IoLXM	$\overline{\text { XMUTE Sink Current }}$	2.5 V	$\mathrm{V} \overline{\text { XMUT }}$	$=0.5 \mathrm{~V}$	1	-	-	mA
ITHKS	HKS Pin Input Current	2.5 V	$\mathrm{V}_{\overline{\mathrm{HKS}}}=$.5V	-	-	0.1	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{HFI}}$	HFI Pull-low Resistance	2.5 V	$\mathrm{V}_{\mathrm{HFI}}=2$	5 V	-	200	-	$\mathrm{k} \Omega$
$\mathrm{R} \overline{\mathrm{HDI}}$	$\overline{\text { HDI Pull-high Resistance }}$	2.5 V	$\mathrm{V}_{\overline{\mathrm{HDI}}}=0$		-	200	-	$\mathrm{k} \Omega$
$\mathrm{R}_{\overline{\mathrm{M} / \mathrm{B}}}$	$\overline{\mathrm{M} / \mathrm{B}}$ Pull-high Resistance	2.5 V	$\mathrm{V}_{\overline{\mathrm{M} / \mathrm{B}}}=$		-	200	-	$k \Omega$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
$\mathrm{R}_{\mathrm{HST}}$	HST Pull-low Resistance	2.5 V	$\mathrm{V}_{\mathrm{HST}}=2.5 \mathrm{~V}$	-	200	-	$\mathrm{k} \Omega$
$\mathrm{l}_{\mathrm{OH} 1}$	Keypad Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$	-4	-	-40	$\mu \mathrm{A}$
loL1	Keypad Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
$\mathrm{IOH2}$	HFO Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$	-1	-	-	mA
loL2	HFO Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	1	-	-	mA
$\mathrm{IOH3}$	HDO Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$	-1	-	-	mA
IoL3	HDO Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	1	-	-	mA
$\mathrm{IOH4}$	KT Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$	-1	-	-	mA
IOL4	KT Pin Sink Current	2.5 V	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	1	-	-	mA
T_{FP}	Pause Time After Flash	-	Control key	-	0.2	-	S
			Digit key	-	1	-	S
T_{RP}	Pause Time for One-key Redialing	-	One-key redialing	-	1	-	S
T ${ }_{\text {DB }}$	Key-in Debounce Time	-	-	-	20	-	ms
$\mathrm{T}_{\text {BRK }}$	Break Time for One-key Redialing	-	One-key redialing	-	1.2	-	S
fosc	System Frequency	-	Crystal $=3.5795 \mathrm{MHz}$	3.5759	3.5795	3.5831	MHz

Pulse Mode Electrical Characteristics
$\mathrm{f}_{\mathrm{KSC}}=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		VDD	Conditions				
IPOH	$\overline{\text { PO Output Source Current }}$	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$	-0.2	-	-	mA
IPOL	$\overline{\text { PO Output Sink Current }}$	2.5 V	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	0.2	0.6	-	mA
PR	Pulse Rate	-	MODE pin is connected to V_{DD}	-	10	-	pps
			MODE pin is opened	-	20	-	
M/B	Make/Break Ratio	-	A resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$ (HT9320B/C/K/L)		33:66	-	\%
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VSS}$ (HT9320A)	-			
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VDD}(\mathrm{HT9320H})$				
			No resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$ (HT9320B/C/K/L)	-	40:60	-	
			$\overline{\mathrm{M} / \mathrm{B}}=$ Floating ($\mathrm{HT9320A}$)				
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VSS}(\mathrm{HT9320H})$				
TPDP	Pre-digit-pause Time	-	M/B ratio=40:60	-	$\begin{aligned} & 40 \text { (10pps) } \\ & 20 \text { (20pps) } \end{aligned}$	-	ms
			M/B ratio=33:66	-	$\begin{aligned} & 33 \text { (10pps) } \\ & 17 \text { (20pps) } \end{aligned}$	-	

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V D	Conditions				
TIDP	Inter-digit-pause Time	-	Pulse rate=10pps. No resistor is linked between $\overline{\mathrm{R} 1}$ and $\overline{\mathrm{C} 5}$ (HT9320A/B/C/K)	-	800	-	ms
			Pulse rate=10pps (HT9320H/L)				
			Pulse rate $=10 \mathrm{pps}$. A resistor is linked between R1 and C5 (HT9320A/B/C/K)	-	400	-	
			Pulse rate=20pps	-	500	-	
T_{M}	Pulse Make Duration	-	A resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$ (HT9320B/C/K/L)	-	$\begin{aligned} & 33 \text { (10pps) } \\ & 17 \text { (20pps) } \end{aligned}$	-	ms
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VSS}$ (HT9320A)				
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VDD}(\mathrm{HT9320H})$				
			No resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$ (HT9320B/C/K/L)	-	$\begin{aligned} & 40 \text { (10pps) } \\ & 20 \text { (20pps) } \end{aligned}$	-	
			$\overline{\text { M/B }}=$ Floating ($\mathrm{HT9320A}$)				
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VSS}$ (H T9320H)				
T_{B}	Pulse Break Duration	-	A resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$ (HT9320B/C/K/L)	-	$\begin{aligned} & 66 \text { (10pps) } \\ & 33 \text { (20pps) } \end{aligned}$	-	ms
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VSS}$ (HT9320A)				
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VDD}(\mathrm{HT9320H})$				
			No resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$ (HT9320B/C/K/L)	-	$\begin{aligned} & 60 \text { (10pps) } \\ & 30 \text { (20pss) } \end{aligned}$	-	
			$\overline{\text { M/B }}=$ Floating ($\mathrm{HT9320A}$)				
			$\overline{\mathrm{M} / \mathrm{B}}=\mathrm{VSS}$ (HT9320H)				
T_{KT}	Keytone Duration	-	Pulse mode (HT9320K)	-	34	-	ms
$\mathrm{F}_{\text {KTC }}$	Keytone Carrier	-	Pulse mode (HT9320K)	-	1.2	-	kHz

Tone Mode Electrical Characteristics
$\mathrm{f}_{\mathrm{OSC}}=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
$\mathrm{V}_{\text {TDC }}$	DTMF Output DC Level	-	-	$0.45 \mathrm{~V}_{\text {DD }}$	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{I}_{\text {tol }}$	DTMF Sink Current	2.5 V	$V_{\text {DTMF }}=0.5 \mathrm{~V}$	0.1	-	-	mA
$\mathrm{V}_{\text {TAC }}$	DTMF Output AC Level	-	Row group, $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	0.12	0.155	0.18	Vrms
R_{L}	DTMF Output Load	2.5 V	THD $\leq-23 \mathrm{~dB}$	5	-	-	k Ω
Acr	Column Pre-emphasis	2.5 V	Row group=0dB	1	2	3	dB
THD	Tone Signal Distortion	2.5 V	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	-	-30	-23	dB
$\mathrm{T}_{\text {tmin }}$	Minimum Tone Duration	-	Auto-redial	-	82.5	-	ms
TITPM	Minimum Inter-tone Pause	-	Auto-redial	-	85.5	-	ms

THD (Distortion) $(\mathrm{dB})=20 \log \left(\sqrt{\mathrm{~V}^{2}+\mathrm{V}^{2}+\ldots \mathrm{Vn}^{2}} / \sqrt{\mathrm{Vi}^{2}+\mathrm{Vh}^{2}}\right)$
Vi, Vh : Row group and column group signals
V1, V2, ... Vn: Harmonic signals (BW=300Hz~3500Hz)

Functional Description

Keyboard matrix

$\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 8}$ and $\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 5}$ form a keyboard matrix. Together with a standard 5×8 keyboard, the keyboard matrix is used for dialing entries. In addition, the keyboard matrix also provides resistor options for different dialing specification selections. The keyboard arrangement for the HT9320 series are shown in the Keyboard Information.

Tone frequency

Tone Name	Output Frequency (Hz)		\% Error
	Specified	Actual	
$\overline{\mathrm{R} 2}$	697	699	$+0.29 \%$
$\overline{\mathrm{R} 3}$	770	766	-0.52%
$\overline{\mathrm{R} 4}$	852	847	-0.59%
$\overline{\mathrm{R} 5}$	941	948	$+0.74 \%$
$\overline{\mathrm{C} 1}$	1209	1215	$+0.50 \%$
$\overline{\mathrm{C} 2}$	1336	1332	-0.30%
$\overline{\mathrm{C} 3}$	1477	1472	-0.34%

Note: \% Error does not contain the crystal frequency drift

Dialing specification selection

Various dialing specifications can be selected by adding resistors across keyboard matrix pins. The allowable option resistor connections are shown on the table.

All the resistors are $330 \mathrm{k} \Omega$. The resistor option functions and the default specifications (without option resistors) are listed below (HT9320A/B/C/K/L).

Option Resistor	Option Function	Default (No Resistor)
$\begin{aligned} & \mathrm{R}_{\mathrm{K} 12} \\ & \text { (HT9320B/C/K/L) } \end{aligned}$	Ratio Selection	40:60
$\mathrm{R}_{\mathrm{K} 13}$	Flash Function/ Time Selection	Flash=control function Flash time $=600 \mathrm{~ms}$
$\mathrm{R}_{\mathrm{K} 14}$		
$\mathrm{R}_{\mathrm{K} 21}$	Pause \& $P \rightarrow T$ Duration Selection	$\begin{aligned} & \mathrm{T}_{\mathrm{P}}=3.6 \mathrm{~s} \\ & \mathrm{~T}_{\mathrm{P} \rightarrow \mathrm{~T}}=3.6 \mathrm{~s} \end{aligned}$
$\mathrm{R}_{\mathrm{K} 31}$	Pulse Number Selection	N
$\mathrm{R}_{\mathrm{K} 41}$		
$\begin{aligned} & \mathrm{R}_{\text {K51 }} \\ & \text { (HT9320A /B/C/K) } \end{aligned}$	Inter-digitPause Time for 10pps	800ms
$R_{\text {K51 }}$ $R_{\text {K61 }}$ $\mathrm{R}_{\mathrm{K} 71}$ (HT9320L)	International Direct Dialing Lock Selection	Normal dialing (unlock)

M/B ratio selection table

- HT9320A

$\overline{\text { M/B }}$ Pin	M/B Ratio (\%)
VSS	$33.3: 66.6$
Floating	$40: 60$

- HT9320B/C/K/L

$\mathbf{R}_{\mathbf{K 1 2}}$	M/B Ratio (\%)
No	$40: 60$
Yes	$33.3: 66.6$

- HT9320H

$\overline{\text { M/B Pin }}$	M/B Ratio (\%)
VDD	$33.3: 66.6$
VSS	$40: 60$

Flash function/time (duration) selection table

- HT9320A/B/C/K/L

$\mathbf{R}_{\mathbf{K 1 3}}$	$\mathbf{R}_{\mathbf{K} 14}$	Flash Function	Flash Time $\left(\mathbf{T}_{\mathbf{F}}\right)$
No	No	Control	600 ms
No	Yes	Digit	600 ms
Yes	No	Digit	98 ms
Yes	Yes	Digit	300 ms

- HT9320H

M/B Pin	Flash Function	Flash Time $\left(\mathbf{T}_{\mathbf{F})}\right.$
VSS	Digit	600 ms
VDD	Digit	100 ms

Pause and $\mathbf{P} \rightarrow \mathbf{T}$ duration selection table

- HT9320A/B/C/K/L

$\mathbf{R}_{\mathbf{K 2 1}}$	$\left.\mathbf{T}_{\mathbf{P}} \mathbf{(s e c}\right)$	$\left.\mathbf{T}_{\mathbf{P} \rightarrow \mathbf{T}} \mathbf{(s e c}\right)$
No	3.6	3.6
Yes	2	1

- HT9320H

$\mathbf{T}_{\mathbf{P}}$ (sec)	$\left.\mathbf{T}_{\mathbf{P} \rightarrow \mathbf{T}} \mathbf{(s e c}\right)$
3.6	3.6

Pulse number selection table

- HT9320A/B/C/K/L

$\mathbf{R}_{\mathbf{K 3 1}}$	$\mathbf{R}_{\mathbf{K 4 1}}$	Pulse Number
No	No	N
No	Yes	$\mathrm{N}+1$
Yes	No	$10-\mathrm{N}$
Yes	Yes	-

- HT9320H

| Pulse Number |
| :---: | :---: |
| N |

Inter-digit-pause time for 10pps

- HT9320A/B/C/K

$\mathbf{R}_{\text {K51 }}$	Inter-digit pause time
No	800 ms
Yes	400 ms

- HT9320H/L

Inter-digit pause time
800 ms

Pulse number table

Keypad	Output Pulse Number		
Digit Key	\mathbf{N}	$\mathbf{1 0}-\mathbf{N}$	$\mathbf{N + 1}$
1	1	9	2
2	2	8	3
3	3	7	4
4	4	6	5
5	5	5	6
6	6	4	7
7	7	3	8
8	8	2	9
9	9	1	10
0	10	10	1
$* / \mathrm{T}$	$\mathrm{P} \rightarrow \mathrm{T}$	$\mathrm{P} \rightarrow \mathrm{T}$	$\mathrm{P} \rightarrow \mathrm{T}$
$\#$	Ignored	Ignored	Ignored

DOUT BCD code

When dialing, the corresponding 4-bit BCD codes are serially presented on DOUT from MSB to LSB. The data of DOUT is valid at the falling edge of the CLOCK pin. The following table lists the BCD codes corresponding to the keyboard input.

Key-In	BCD Code	Key-In	BCD Code
1	0001	8	1000
2	0010	9	1001
3	0011	0	1010
4	0100	$* / T$	1101
5	0101	$\#$	1100
6	0110	F	1011
7	0111	P	1110

On hook store (HT9320A/H)

When the external power supply $(2 \mathrm{~V} \sim 5.5 \mathrm{~V})$ is used and the HST pin is connected to VDD, the user can store dialing numbers to the memories (M1~M20) during on-hook state.

On/Off hook store selection table

HST Pin	Hook Store Mode
VDD (HT9320A/H)	On-hook store
Floating (HT9320A)	Off-hook store
VSS (HT9320H)	Off-hook store

Lock function (HT932L)

This function aims to detect lock dialing numbers to prevent from an unauthorized long distance call. The dialing output of this chip is disabled if the first input key after on-off hook is the lock number when the lock function is enabled.

International direct dialing lock (IDD lock) selection table

$\mathbf{R K}_{\text {K1 }}$	$\mathbf{R K}_{\text {K1 }}$	$\mathbf{R}_{\text {K71 }}$	Lock Function
No	No	No	Normal dialing without lock function
No	No	Yes	To lock 0
No	Yes	-	To lock 0, 9
Yes	-	-	IDD lock operation by the tele- phone keyboard. (See keyboard operation)

Note: "-_" stands for "don't care"

Hand-free function operation

- Hand-free function execution

When HFO is low, a rising edge triggers the HFI, enabling the Hand-free function (HFO becomes high).

- Reset Hand-free function

When HFO is high, the Hand-free function is enabled and can be reset by

- Off-hook
- Applying a rising edge to HF
- Changing the HDO pin from low to high
- Hand-free function table

Current State			Input			Next State	
HKS	HFO	HDO	$\overline{\text { HDI }}$	HFI	HKS	HFO	HDO
H	L	X	H	L	An	L	An
H	L	X	H	-	An	H	L
H	H	X	H	-	An	L	An
H	X	L	H	L	L	L	L
L	L	X	H	L	An	L	An
L	L	X	H	\triangle	An	H	L
L	H	L	H	\triangle	An	L	An
L	X	X	H	L	H	An	An
X	X	L	∇	L	An	L	H
H: Logic HIGH L: Logic LOW			X: Don't care An: Unchanged		©: Rising edge ₹ Falling edge		

Hold-line function operation

- Hold-line function execution When HDO is low, a falling edge triggers the $\overline{\mathrm{HDI}}$, enabling the Hold-line function (HDO becomes high). The XMUTE remains low when HDO is high.
- Reset Hold-line function

When HDO is high, the Hold-line function is enabled and can be reset by:

- Off-hook
- Applying a falling edge to $\overline{\mathrm{HDI}}$
- Changing the HFO pin from low to high
- Hold-line function table

Current State			Input			Next State	
HKS	HDO	HFO	HFI	$\overline{\text { HDI }}$	HKS	HDO	HFO
H	L	X	L	H	An	L	An
H	L	X	L	∇	An	H	L
H	H	L	L	∇	An	L	An
H	X	X	L	H	L	L	L
L	L	X	L	H	An	L	An
L	L	X	L	∇	An	H	L
L	H	L	L	∇	An	L	An
L	X	X	L	H	H	An	An
X	X	L	-	H	An	L	H
H: Logic HIGH L: Logic LOW			X: Don't care An: Unchanged		- : Rising edge च: Falling edge		

Key definition

- 0,1,2,3,4,5,6,7,8,9 keys

These are dialing number input keys for both the pulse mode and the tone mode operations

- */T

This key executes the $P \rightarrow T$ function and wait a $T_{P \rightarrow T}$ duration in the pulse mode. On the other hand, the $* / T$ key executes the $*$ function in the tone mode.

- * (HT9320H)

The * key executes the * tone output function in the tone mode. No response in the pulse mode.

- $\mathrm{P} \rightarrow \mathrm{T}$

The key executes the $P \rightarrow T$ function in the pulse mode. No response in the tone mode.

- \#

This is a dialing signal key for the tone mode only, no response in the pulse mode.

- SA

Pressing this key can save the preceding dialing telephone numbers. The saved number is redialed if it is pressed again. SA will also redial the saved number if it is the first key pressed at the off-hook state. During the dialing signal transmission, the SA key is inhibited.

- F

The flash key can be selected as a digit or as a control key by the option resistors $R_{\mathrm{K} 13} \& \mathrm{R}_{\mathrm{K} 14}$. Pressing the flash key will force the $\overline{\mathrm{PO}}$ pin to be "low" for the T_{F} duration and is then followed by $T_{F P}$ (sec). T_{F} can also be selected by $\mathrm{R}_{\mathrm{K} 13}, \mathrm{R}_{\mathrm{K} 14}$

- P

Pause key. The execution of this key can pause the output for the T_{P} duration. T_{P} can be selected by $R_{K 21}$.

- R

Redial key. Executes redialing as well as one-key redial function.

- R/P

Redial and pause function key. If it is pressed as the first key after off-hook, this key executes the redial function. Otherwise, it works as the pause key.

- ST

Store key. The execution of this key actuates the store memory function with (or without) dialing output. During the dialing signal transmission, the ST key is inhibited.

- A

Auto key. When this key is pressed before pressing any one of the digital keys (0~9) it executes the two-touch/ three-touch memory dialing function.

- PAGE

M11~M20 are represented by pressing the PAGE key and the digital keys (0~9) or M1~M10. That is to say, A PAGE digit key (0~9) or PAGE \rightarrow M1~M10 executesM11~M20memorydialing.

- M1~M20

One-touch memory dialing for speed-dialing in either pulse or tone mode.

Keyboard operation

The following operations are described under an on-off-hook or on-hook condition with the hand-free active condition.

- Normal dialing
- Pulse mode
(a) without */T

Keyboard input: D1 D2 ... Dn
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with */T

Keyboard input: D1 D2 ... Dn ${ }^{* / T}$ Dn+1 ... Dm
Dialing output: $\underbrace{\mathrm{D} 1 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{TP} \rightarrow \mathrm{T} \quad \underbrace{\mathrm{D}+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: D1 D2 ... Dn */T Dn+1 ... Dm
SAM: Unchanged

- Tone mode
(a) without */T

Keyboard input: D1 D2 ... Dn
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with */T

Keyboard input: D1 D2 ... Dn | $/ T$ | |
| :---: | :---: |
| $D n+1$ | .. | Dm

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm RM: D1 D2 ... Dn * Dn+1 ... Dm
SAM: Unchanged

Note: The maximum capacity of the RM memory is 32 digits. When more than 32 digits are entered, the signal is transmitted but the redial function is inhibited.

- Redial
- Pulse mode
(a) without $* / T, P \rightarrow T$

RM content: D1 D2 ... Dn
Keyboard input: R
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: [R or $R / P]$
Dialing output: $\underbrace{1 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{TP} \rightarrow \mathrm{T}^{\mathrm{D}} \underbrace{\mathrm{n}+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: Unchanged SAM: Unchanged

Tone mode
(a) without $* / T, P \rightarrow T$

RM content: D1 D2 ... Dn
Keyboard input: R
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: R or R / P]
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: Unchanged
SAM: Unchanged

Note: If the dialing number exceeds 32 digits, redialing is inhibited and $\overline{\mathrm{PO}}=\mathrm{VDD}$

- One-key redial

- Pulse mode
(a) without */T

Keyboard input: D1 D2 ... Dn R
Dialing output: D $\underbrace{}_{\text {D2 } \ldots \text { Dn }}$ TbRK TRP Pulse
$\underbrace{\text { D1 D2 }}_{\text {Pulse }}$
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with */T

Keyboard input: D1 D2 ... Dn ${ }^{* / T}$ Dn+1 \ldots Dm R
Dialing output: $\underbrace{\mathrm{D} 1 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{TP} \rightarrow \mathrm{T} \underbrace{\mathrm{Dn+1}}_{\text {Tone }} \mathrm{Dm}$ Tbrk Trp D1 D2 ... Dn Tp T

Pulse
D $\underbrace{n+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: D1 D2 ... Dn */T Dn+1 ... Dm
SAM: Unchanged

Tone mode
(a) without */T

Keyboard input: D1 D2 ... Dn R
Dialing output: D1 D2 ... Dn TbRk TRP D1 D2
... Dn
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with */T Keyboard input: D1 D2 ... Dn ${ }^{\star / T} \mathrm{Dn}^{\mathrm{D}+1} \ldots$ Dm R
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
Tbrk Trp D1 D2 ... Dn * Dn+1
... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm
SAM: Unchanged

Note: If the dialing number exceeds 32 digits, redialing is inhibited and $\overline{\mathrm{PO}}=\mathrm{V} D \mathrm{D}$

- Pause

Keyboard input: D1 D2 ... Dn [P or $\mathrm{R} / \mathrm{P}] \mathrm{Dn+1} \ldots \mathrm{Dm}$
Dialing output: D1 D2 ... Dn Tp Dn+1 ... Dm
RM: D1 D2 ... Dn P Dn+1 ... Dm
SAM: Unchanged

- SA copy
- Pulse mode
(a) without */T

Keyboard input: D1 D2 ... Dn SA
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: D1 D2 ... Dn
(b) with */T

Keyboard input: D1 D2 ... Dn ${ }^{\text {F/TTD+1}} \mathrm{Dn}$ Dm SA
Dialing output: $\underbrace{\text { D D2 }}_{\text {Pulse }} \quad \mathrm{TP} \rightarrow \mathrm{T} \underbrace{\mathrm{D}}_{\text {Tone }} \underbrace{n+1 \ldots \mathrm{Dm}}$
RM: D1 D2 ... Dn */T Dn+1 ... Dm
SAM: D1 D2 ... Dn */T Dn+1 ... Dm

Tone mode
(a) without $* / T$

Keyboard input: D1 D2 ... Dn SA
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: D1 D2 ... Dn
(b) with */T

Keyboard input: D1 D2 ... Dn ${ }^{\pi / T} D n+1$.. Dm SA
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm
SAM: D1 D2 ... Dn * Dn+1 ... Dm

Note: The maximum capacity of the RM memory is 32 digits. When more than 32 digits plus the "SA" key are entered, the SAVE function will not be executed, and all the existing data in the save memory will not be changed.

- SA dialing
- Pulse mode
(a) without */T

SAM content: D1 D2 ... Dn
Keyboard input: SA
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

SAM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: SA
Dialing output: $\underbrace{D 1 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{TP} \rightarrow \mathrm{T}_{\mathrm{D}}^{\mathrm{D}} \underbrace{+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: Unchanged SAM: Unchanged

Tone mode
(a) without */T

SAM content: D1 D2 ... Dn
Keyboard input: SA
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

SAM content: D1 D2 ... Dn * Dn+1 ... Dm
Keyboard input: SA
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: Unchanged
SAM: Unchanged

- Memory store
- One-touch memory store without dialing output

Keyboard input: ST D1 D2 ... Dn ST Ma
Dialing output:
Ma: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged

- Two-touch memory store without dialing output (M1~M10)

Keyboard input: ST D1 D2 ... Dn ST [b or Mb]
(M11~M20)
Keyboard input: ST D1 D2 ... Dn ST
PAGE [b or Mb]
Dialing output:
Mb: D1 D2 ... Dn
Ma: D1 D2 ... Dn (a=b+10, M10=M0)
RM: D1 D2 ... Dn
SAM: Unchanged
Three-touch memory store without dialing output (M11~M20)

Keyboard input: ST D1 D2 ... Dn ST
PAGE [b or Mb]
Dialing output:
Ma: D1 D2 ... Dn (a=b+10, M10=M0)
RM: D1 D2 ... Dn
SAM: Unchanged

One-touch memory store with dialing output
Keyboard input: D1 D2 ... Dn ST ST Ma
Dialing output: D1 D2 ... Dn
Ma: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged

- Two-touch memory store with dialing output (M1~M10)

Keyboard input: D1 D2 ... Dn ST ST [b or Mb]
(M11~M20)
Keyboard input: D1 D2 ... Dn ST ST PAGE [b or Mb]
Dialing output: D1 D2 ... Dn
Mb: D1 D2 ... Dn
Ma: D1 D2 ... Dn (a=b+10, M10=M0)
RM: D1 D2 ... Dn
SAM: Unchanged

- Three-touch memory store with dialing output (M11~M20)

Keyboard input: D1 D2 ... Dn ST ST
PAGE [b] or Mb]
Dialing output: D1 D2 ... Dn
Ma: D1 D2 ... Dn (a=b+10, M10=M0)
RM: D1 D2 ... Dn
SAM: Unchanged

Note: If the dialing number exceeds 32 digits, the memory store is inhibited.
However, if the dialing number is not more than 32 digits the memory will store a max. of 16 digits.
$\mathrm{Ma}=\mathrm{M} 1 \sim \mathrm{M} 20, \mathrm{Mb}=\mathrm{M} 1 \sim \mathrm{M} 10, \mathrm{a}=1 \sim 20, \mathrm{~b}=1 \sim 9,0$

- Memory dialing
- One-touch memory dialing (M1~M20)

Ma content: D1 D2 ... Dn
Keyboard input: Ma
Dialing output: D1 D2 ... Dn
Ma: Unchanged
RM: D1 D2 ... Dn
SAM: Unchanged

- Two-touch memory dialing (M1~M10)

Mb content: D1 D2 ... Dn
Keyboard input: A [b] or Mb]
Dialing output: D1 D2 ... Dn
Mb: Unchanged
RM: D1 D2 ... Dn
SAM: Unchanged

- Three-touch memory dialing (M11~M20)

M11 content: D1 D2 ... Dn
Keyboard input: A PAGE [Mb or b]
Dialing output: D1 D2 ... Dn
Ma: Unchanged ($a=b+10, \mathrm{M} 10=\mathrm{M} 0$)
RM: D1 D2 ... Dn
SAM: Unchanged

```
Note: a=1~20, Ma=M1~M20
            Mb=M1~M10, b=1~9, 0
```

- Chain dialing

M1 content: D1 D2 ... Dn
M2 content: Dn+1 ... Dm
Keyboard input: D1 D2 D3 [M1 or A 1] [M2 or A 2]
Dialing output: D1 D2 D3 D1 D2 ... Dn Dn+1 ... Dm
M1/M2: Unchanged
RM: D1 D2 D3 D1 D2 ... Dn Dn+1 ... Dm
SAM: Unchanged
Note: If the dialing number exceeds 32 digits, redialing is inhibited and $\overline{\mathrm{PO}}=\mathrm{V} D \mathrm{D}$

- Flash

Flash as a digital key
(a) The intervenient key

Keyboard input: D1 D2 ... Dn F Dn+1 ... Dm
Dialing output: D1 D2 ... Dn Tf Tfp Dn+1 ... Dm
RM: D1 D2 ... Dn
SAM: Unchanged
(b) The first key

Keyboard input: F D1 D2 ... Dn
Dialing output: TF TFP D1 D2 Dn
RM: Unchanged
SAM: Unchanged

- IDD lock operation by the keyboard (2 lock numbers, 3 digits/number at maximum) (A $330 \mathrm{k} \Omega$ resistor is connected between $\overline{\mathrm{C} 5}$ and $\overline{\mathrm{R} 1}$)

Personal/Lock No.1/Lock No. 2 input operation
(a) Personal code doesn't exist

Stores Personal Code: ST D1 D2 D3 ST * 0
Stores Lock No.1: ST D4 D5 D6 ST * 1
Stores Lock No.2: ST D7 D8 D9 ST * 2
(b) Personal code exist

Changes Personal Code: ST D1 D2 D3 ST \# ST D4 D5 D6 ST * 0 (Old personal code) (New personal code)
Changes Lock No.1: ST D1 D2 D3 ST \# ST D4 D5 D6 ST * 1
(Personal code) (Lock No.1)

Changes Lock No.2: ST D1 D2 D3 ST \# ST D7 D8 D9 ST * 2 (Personal code) (Lock No.2)
Changes Personal Code, Lock No. 1 and Lock No. 2 at one time
ST D1 D2 D3 ST \# ST D4 D5 D6 ST * 0 (continued)
(Old personal code) (New personal code)
ST D7 D8 D9 ST * 1 ST D10 D11 D12 ST * 2
(Lock No.1) (Lock No.2)

- Personal/Lock No.1/Lock No. 2 cancel operation

Cancels Personal code: ST D1 D2 D3 ST \# ST \# 0
Cancels Lock No.1: ST D1 D2 D3 ST \# ST \# 1
Cancels Lock No.2: ST D1 D2 D3 ST \# ST \# 2

- Temporary release both of the lock numbers (Lock No.1, Lock No.2):

ST D1 D2 D3 ST \# Dm Dm+1 Dm+2 DI ... Dn
(Personal code)

Note: D1~D12 = 0~9
Dm Dm+1 Dm+2 = 0~9
DI $\ldots \mathrm{Dn}=0 \sim 9$, ${ }^{*}$, \#

- Note:

RM: Redial memory
SAM: Save dialing memory
D1 D2 ... Dn: 0~9
Dn+1 ... Dm: 0~9, *, \#
Dm+1 ... DI: 0~9, *, \#
DI+1 ... DK: 0~9, *, \#

Timing Diagrams

Normal dialing

- Pulse mode

- Tone mode

Dialing with Pause key

- Pulse mode

- Tone mode

Flash key operation

Pulse \rightarrow Tone operation

One key redial operation

CLOCK \& DOUT operating

Note: D1=D3=3
D2=2

Application Circuits

Application circuit 1

Application circuit 2

Application circuit 3

Application circuit 4

Application circuit 5

Package Information

28-pin DIP (600 mil) outline dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	1445	-	1465
B	535	-	555
C	145	-	155
D	125	-	145
E	16	-	20
F	50	-	70
G	-	-	-
H	595	-	615
α	635		

22-pin SKDIP (300mil) outline dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	1085	-	1105
B	253	-	263
C	125	-	135
D	125	-	145
E	16	-	20
F	50	-	70
G	-	100	-
H	295	-	315
α	330	-	375

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District, Shenzhen, China 518057
Tel: 0755-8616-9908, 8616-9308
Fax: 0755-8616-9533

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 010-6641-0030, 6641-7751, 6641-7752
Fax: 010-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No. 97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 028-6653-6590
Fax: 028-6653-6591

Holmate Semiconductor, Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com

Copyright © 2002 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

