Liquid Lens Driver

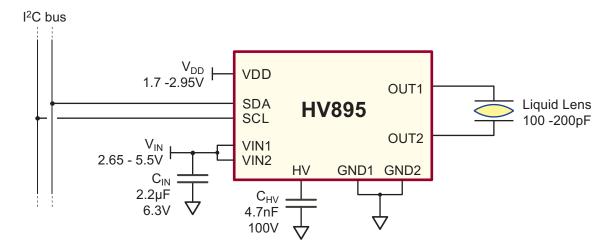
Features

- Drives capacitive loads up to 200pF
- Programmable drive amplitude (up to 60V_{RMS})
- On-chip boost converter
- No external inductor
- I²C interface
- ▶ Low operating current (≤20mA)
- Low standby current (≤1.0µA)
- Controlled drive edge reduces EMI
- ▶ 1.0mm × 6.0mm flip-chip

Applications

- Cell phone and PDA cameras
- Bar code readers
- Web and laptop cameras
- Biometric scanners
- Ultracompact cameras

General Description


The HV895 is designed to drive liquid lenses of up to 200pF with a 1.5kHz waveform at amplitudes up to $60V_{\rm RMS}$, controlled via an I²C interface.

A single byte (AMP) written to the HV895 controls the operation of the driver. Setting AMP = 01h to FFh controls output amplitude in 255 monotonic steps. Setting AMP = 00h causes the HV895 to go into low power standby mode, consuming less than 1.0μ A. When active, the HV895 draws less than 20mA.

A charge pump boost converter integrated on-chip provides the high voltage necessary for driving the lens. No external inductors or diodes are needed. Two ceramic 0402 size capacitors are the only external components required for a complete lens driver circuit. The narrow die size and only 2 small external components allow an entire lens driver circuit to be incorporated inside a camera module.

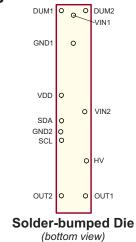
An H-bridge output stage provides AC drive to the lens, allowing the use of a single high voltage boost converter while providing alternating polarity to the lens. Controlled rising and falling edges on the drive waveform reduces EMI.

The HV895 is offered in a 1.0mm \times 6.0mm lead-free solder-bumped flip-chip.

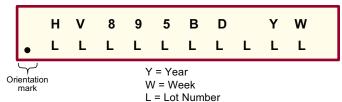
Typical Application Circuit

HV895

Ordering Information



Absolute Maximum Ratings


Parameter	Value
V _{IN} , V _{DD}	-0.5V to 6.5V
SDA, SCL	-0.5V to 6.5V
Operating temperature	-40°C to +85°C
Storage temperature	-65°C to +150°C

Device may not meet specifications, but will incur no damage.

Ball Configuration

Product Marking

Solder-bumped Die

(top view)

Recommended Operating Conditions

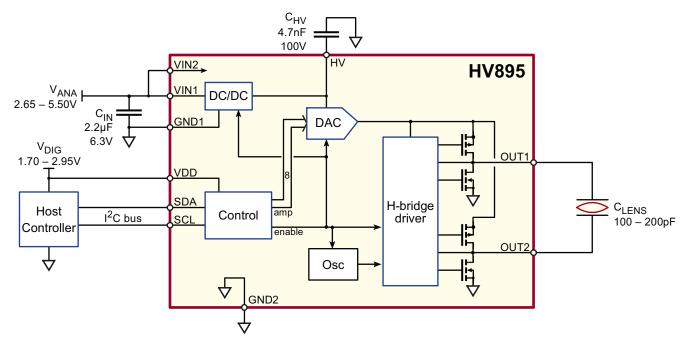
Sym	Parameter	Min	Тур	Max	Units	Conditions		
V _{IN}	Supply voltage	2.65	-	5.5	V			
V _{DD}	I ² C logic level reference	1.70	-	2.95	V			
t _{vin}	Time for V_{IN} to ramp to 90% ⁽¹⁾	-	-	2.0	ms			
C	Supply bypass capacitor	-	2.2	-	μF			
C _{HV}	High voltage storage capacitor	24	-	-	x C _{LOAD}	100V rating		
C	Load (lens) capacitance	100	150	200	pF			
f _{scl}	I ² C clock	-	-	400	kHz			
T _A	Ambient temperature	-25	-	+85	°C			
Notos:	1				1			

Notes:

1. To assure the driver powers up in standby state. No damage will occur if ramped up slower.

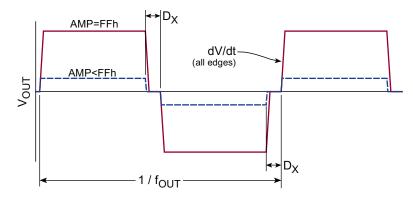
Electrical Specifications (Over recommended operating conditions @ 25°C unless otherwise specified)

Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{IN}	V _{IN} supply current	-	- 8.0	500 20	nA mA	$\begin{array}{l} AMP=00h,SDA=V_{_{\mathrm{DD}}},SCL=V_{_{\mathrm{DD}}}\\ AMP=FFh,SDA=V_{_{\mathrm{DD}}},SCL=V_{_{\mathrm{DD}}} \end{array}$
I _{DD}	V _{DD} supply current	-	- 9.0	500 12	nΑ μΑ	$\begin{array}{l} AMP=00h,SDA=V_{_{\mathrm{DD}}},SCL=V_{_{\mathrm{DD}}}\\ AMP=FFh,SDA=V_{_{\mathrm{DD}}},SCL=V_{_{\mathrm{DD}}} \end{array}$
HV	Output voltage of internal boost converter	71	75	79	V	C _{LOAD} = 0pF


Sym	Parameter	Min	Тур	Max	Units	Conditions
$V_{OUT(AC)}$	AC output voltage	- 9.0 55.0	0 9.6 59.7	- 10.0 62.7	V _{RMS}	AMP = 00h AMP = 01h AMP = FFh
$V_{OUT(DC)}$	DC output offset voltage	-2.0	0	+2.0	V	
DNL	Differential non-linearity (guaran- teed monotonic)	-0.5	-	+0.5	LSB	
f _{out}	Output frequency	1.0	1.5	2.0	kHz	
D _x	Transition time (fraction of period)	-	4.7	-	%	
dV/dt	Output slope	-	4.7	-	V/µs	C _{LOAD} = 150pF, V _{IN} = 3.8V
t _{s∪}	Startup time to 90% amplitude ¹	-	-	20	ms	AMP = 00h \rightarrow FFh, C _{HV} = 4.7nF
t _A	Amplitude response time ¹	-	-	5.0	ms	Over any 1-step AMP increment or decrement (except 00h)
V	Logic low input voltage	-	-	0.30	x V _{DD}	
V _{IH}	Logic high input voltage	0.7	-	-	x V _{DD}	
V _{OL}	Logic low output voltage	-	-	0.2	x V _{DD}	I _{LOAD} = 3.0mA
I _L	Logic low input current	-	-	10	μA	V _{DD} = 1.70 - 2.95V
I _H	Logic high input current	-	-	10	μA	V _{DD} = 1.70 - 2.95V
C	Logic input capacitance	-	-	10	pF	V _{DD} = 1.70 - 2.95V, grounded or open
Votes:	Logio input oupdoitanteo			10	P1	

Electrical Specifications (cont.)(Over recommended operating conditions @ 25°C unless otherwise specified)

Notes:


1. Measured from the rising edge of the I²C acknowledge bit that terminates transmission of the AMP data byte.

Block Diagram and Typical Application

HV895

Output Waveform

Applications Information

l²C

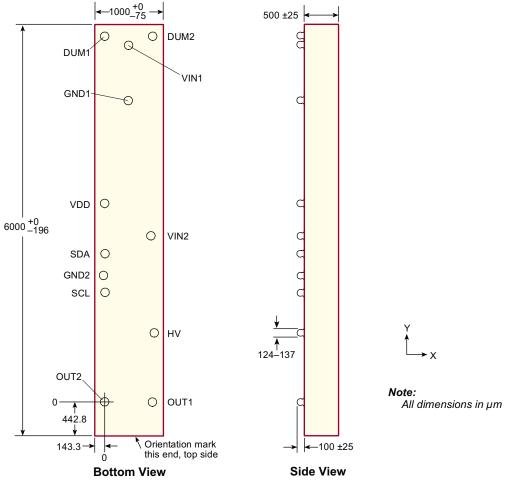
The HV895 is a write-only fast mode I²C device. Logic voltages are referenced to V_{pp} .

Address

The HV895 recognizes a 7-bit address. The device is pre-programmed with an I^2C address of 0100011b. For other addresses, please contact the factory.

Data

A single byte written to the HV895 controls the operation of the lens driver. See the Command Table below. The MSB is clocked-in first.


Command Table

AMP	Description
	Low power standby mode. When in standby mode, the internal boost converter and H-bridge oscillator are shut down, and the OUT pins are held at ground.
00h	Any AMP value other than 00h brings the HV895 out of standby mode. The time it takes the HV895 to exit standby mode and achieve full output amplitude is less than 20ms with a 4.7nF capacitor on the HV pin. Faster startup times may be achieved by lowering $C_{_{HV}}$ at the expense of possible waveform distortion.
	Controls output amplitude according to:
01h-FFh	$V_{OUT(RMS)} = 9.4 V_{RMS} + (AMP \cdot 197 mV_{RMS})$
	where AMP is an integer from 1 to 255

Supplies

 V_{IN} must be ramped up in less than 2.0ms to assure the driver starts-up in standby mode. If brought up slower, the driver may not start-up in standby mode, with output amplitude at an indeterminate level. In this case, writing AMP = 00h brings the driver to standby mode. No damage will occur if ramped slower than 2.0ms.

Bump	X	Y	Description				
VIN1	353.4	5201.7	VIN1 supplies the DC-DC converter. VIN2 supplies the rest of the IC. They must be tied together.				
VIN2	675.4	2424.6	minimize conducted EMI, bypass with a 2.2µF ceramic capacitor to ground close to the IC.				
VDD	12.7	2891.0	Externally supplied reference voltage for the I ² C logic levels. Connect to the I ² C bus supply.				
GND1	353.4	4397.6	GND1 is the ground for the for the DC-DC converter, while GND2 is for the rest of the IC. Connect both				
GND2	-14.8	1844.0	to system ground.				
SCL	12.7	1594.0	Serial clock for the I ² C interface. The HV895 is a Fast Mode device ($f_{SCL} \le 400$ kHz).				
SDA	12.7	2171.2	Serial data for the I ² C interface. The HV895 is a write-only device, with a single 8-bit command byte (AMP, see page 4).				
HV	722.4	1006.6	High voltage DC output of the internal boost converter. Connect a 4.7nF, 100V ceramic capacitor to ground close to the IC.				
OUT1	666.3	0.0	Outputs of the H-bridge driver. The liquid lens connects between these two bumps. When disabled (AMP = 00h), both of these outputs are held at ground.				
OUT2	0	0					
DUM1	3.9	5334.2	These bumps are for mechanical support only. Provide pads on the PCB for these solder bumps. No				
DUM2	702.9	5334.2	electrical connections should be made to these bumps.				

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2008 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.