

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UN	NLESS OTHERWI	SE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			•		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.95		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	1008		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 20 A	0.0046	0.0046	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$	0.0056	0.0056	
Forward Transconductance ^a	G fs	$V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$	62	80	S
Diode Forward Voltage ^a	V_{SD}	I _S = 2.7 A	0.73	0.72	V
Dynamic ^b	-		-	-	
Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	4358	3780	pF
Output Capacitance	C_{oss}		533	555	
Reverse Transfer Capacitance	C_{rss}		236	250	
Total Gate Charge	Q_g	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 20 \text{ A}$	63	69	nC
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$	31	30	
Gate-Source Charge	Q _{gs}		7.5	7.5	
Gate-Drain Charge	Q_{gd}		6.5	6.5	

Notes a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.