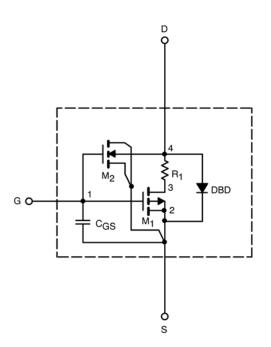


P-Channel 40-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	1.9		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 V, V_{GS} = -10 V$	406		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = -10 V, I _D = -10.5 A	0.011	0.011	Ω
		V_{GS} = -4.5 V, I _D = -8.7 A	0.016	0.016	
Forward Transconductance ^a	g _{fs}	V_{DS} = -15 V, I_{D} = -10.5 A	32	26	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -2.7 A, $V_{\rm GS}$ = 0 V	-0.82	-0.74	V
Dynamic ^b				•	
Total Gate Charge	Qg	V_{DS} = -15 V, V_{GS} = -5 V, I_{D} = -10.5 A	34	40	nC
Gate-Source Charge	Q _{gs}		10	10	
Gate-Drain Charge	Q _{gd}		14	14	

Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si4401BDY

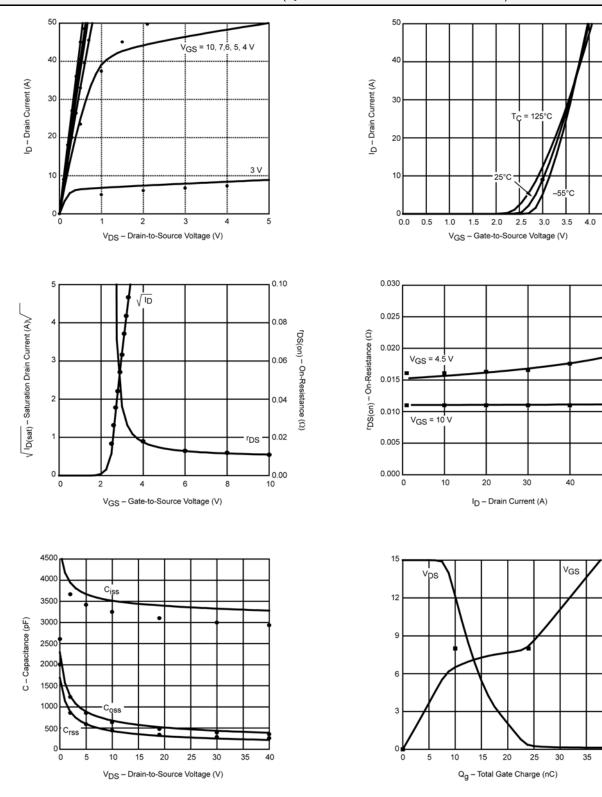
Vishay Siliconix

4.5

50

6.0

4.8


3.6

2.4

1.2

40 0.0

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.