technologies

CoolMOS ${ }^{\text {TM }}$ Power Transistor

Features

- Lowest figure-of-merit $\mathrm{R}_{\mathrm{ON}} \times \mathrm{Q}_{\mathrm{g}}$
- Ultra low gate charge
- Extreme dv/dt rated
- High peak current capability
- Qualified according to JEDEC ${ }^{1)}$ for target applications
- Pb-free lead plating; RoHS compliant

CoolMOS CP is specially designed for:

- Hard switching SMPS topologies

Product Summary

$V_{\mathrm{DS}} @ \mathrm{~T}_{\mathrm{j}, \text { max }}$	650	V
$R_{\mathrm{DS} \text { (on), max }}$	0.199	Ω
$Q_{\mathrm{g}, \mathrm{typ}}$	33	nC

Maximum ratings, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous diode forward current $^{2)}$	I_{S}	${ }_{\mathrm{C}}=25^{\circ} \mathrm{C}$	16	A
Diode pulse current ${ }^{3)}$	$I_{\mathrm{S}, \text { pulse }}$		51	
Reverse diode $\mathrm{d} v / \mathrm{d} t^{5)}$	$\mathrm{d} v / \mathrm{d} t$		15	V/ns

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	

Thermal characteristics

Thermal resistance, junction - case	$R_{\text {thJc }}$		-	-	3.7	$\mathrm{~K} / \mathrm{W}$
Thermal resistance, junction - ambient	$R_{\text {thJA }}$	leaded	-	-	80	
Soldering temperature, wavesoldering only allowed at leads	$T_{\text {sold }}$	$1.6 \mathrm{~mm}(0.063 \mathrm{in})$. from case for 10 s	-	-	260	${ }^{\circ} \mathrm{C}$

Electrical characteristics, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{\text {(BR)DSS }}$	$V_{G S}=0 \mathrm{~V}, I_{\mathrm{D}}=250 \mu \mathrm{~A}$	600	-	-	V
Gate threshold voltage	$V_{\text {GS(th) }}$	$V_{\text {DS }}=V_{\mathrm{GS}}, I_{\mathrm{D}}=1.1 \mathrm{~mA}$	2.5	3	3.5	
Zero gate voltage drain current	I DSS	$\begin{aligned} & V_{\mathrm{DS}}=600 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\mathrm{DS}}=600 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	10	-	
Gate-source leakage current	$I_{\text {GSS }}$	$V_{\text {GS }}=20 \mathrm{~V}, V_{\text {DS }}=0 \mathrm{~V}$	-	-	100	nA
Drain-source on-state resistance	$R_{\text {DS(on) }}$	$\begin{aligned} & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=9.9 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.18	0.199	Ω
		$\begin{aligned} & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=9.9 \mathrm{~A}, \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	0.49	-	
Gate resistance	$R_{\text {G }}$	$f=1 \mathrm{MHz}$, open drain	-	2	-	Ω

IPA60R199CP

Parameter		Symbol	Conditions	Values		
			Unit	typ.	max.	

Dynamic characteristics

Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=100 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1520	-	pF
Output capacitance	$C_{\text {oss }}$		-	72	-	
Effective output capacitance, energy related ${ }^{6)}$	$C_{\text {o(er) }}$	$\left\{\begin{array}{l} V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=0 \mathrm{~V} \\ \text { to } 480 \mathrm{~V} \end{array}\right.$	-	69	-	
Effective output capacitance, time related $^{7)}$	$C_{\text {o(r) }}$		-	180	-	
Turn-on delay time	$t_{\text {d(on) }}$	$\begin{aligned} & V_{\mathrm{DD}}=400 \mathrm{~V}, \\ & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=9.9 \mathrm{~A}, \\ & R_{\mathrm{G}}=3.3 \Omega \end{aligned}$	-	10	-	ns
Rise time	t_{r}		-	5	-	
Turn-off delay time	$t_{\text {d(off) }}$		-	50	-	
Fall time	$t_{\text {f }}$		-	5	-	

Gate Charge Characteristics

Gate to source charge	$Q_{\text {gs }}$	$\left\{\begin{array}{l} V_{\mathrm{DD}}=400 \mathrm{~V}, I_{\mathrm{D}}=9.9 \mathrm{~A}, \\ V_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{array}\right.$	-	8	-	nC
Gate to drain charge	$Q_{\text {gd }}$		-	11	-	
Gate charge total	Q_{g}		-	32	43	
Gate plateau voltage	$V_{\text {plateau }}$		-	5.0	-	V

Reverse Diode

Diode forward voltage	$V_{\text {SD }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{F}}=9.9 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.9	1.2	V
Reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & V_{\mathrm{R}}=400 \mathrm{~V}, I_{\mathrm{F}}=I_{\mathrm{S}}, \\ & \mathrm{~d} i_{\mathrm{F}} / \mathrm{d} t=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	340	-	ns
Reverse recovery charge	$Q_{\text {rr }}$		-	5.5	-	$\mu \mathrm{C}$
Peak reverse recovery current	$I_{\text {rrm }}$		-	33	-	A

${ }^{1)}$ J-STD20 and JESD22
${ }^{2)}$ Limited only by maximum temperature
${ }^{3)}$ Pulse width t_{p} limited by $T_{\mathrm{j}, \text { max }}$
${ }^{4)}$ Repetitive avalanche causes additional power losses that can be calculated as $P_{\mathrm{AV}}=E_{\mathrm{AR}}{ }^{\star} f$.
${ }^{5)} I_{S D}<=I_{D}, d i / d t<=200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\text {DClink }}=400 \mathrm{~V}, \mathrm{~V}_{\text {peak }}<\mathrm{V}_{(B R) D S S}, \mathrm{~T}_{\mathrm{j}}<\mathrm{T}_{\text {jmax }}$, identical low side and high side switch.
${ }^{6)} C_{\text {o(er) }}$ is a fixed capacitance that gives the same stored energy as $C_{\text {oss }}$ while $V_{\text {DS }}$ is rising from 0 to $80 \% V_{\text {DSs. }}$
${ }^{\text {7) }} C_{\text {o(r) }}$ is a fixed capacitance that gives the same charging time as $C_{\text {oss }}$ while $V_{\text {DS }}$ is rising from 0 to $80 \% V_{\text {DSs. }}$

1 Power dissipation
$P_{\text {tot }}=\mathrm{f}\left(T_{\mathrm{C}}\right)$

3 Max. transient thermal impedance
$Z_{\text {thJC }}=f\left(t_{p}\right)$
parameter: $D=t_{p} / T$

2 Safe operating area

$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{C}}=25^{\circ} \mathrm{C} ; D=0$
parameter: t_{p}

4 Typ. output characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

5 Typ. output characteristics
$I_{D}=f\left(V_{D S}\right) ; T_{j}=150^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

7 Drain-source on-state resistance

$R_{\mathrm{DS}(\text { on })}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=9.9 \mathrm{~A} ; V_{\mathrm{GS}}=10 \mathrm{~V}$

6 Typ. drain-source on-state resistance
$R_{\mathrm{DS}(\text { on })}=\mathrm{f}\left(I_{\mathrm{D}}\right) ; T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

8 Typ. transfer characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{GS}}\right) ;\left|V_{\mathrm{DS}}\right|>2\left|I_{\mathrm{D}}\right| R_{\mathrm{DS}(\text { on })} \max$
parameter: T_{j}

9 Typ. gate charge
$V_{G S}=f\left(Q_{\text {gate }}\right) ; I_{D}=9.9$ A pulsed parameter: $V_{D D}$

11 Avalanche energy

$E_{A S}=f\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=6.6 \mathrm{~A} ; V_{\mathrm{DD}}=50 \mathrm{~V}$

10 Forward characteristics of reverse diode
$I_{\mathrm{F}}=\mathrm{f}\left(V_{\mathrm{SD}}\right)$
parameter: T_{j}

12 Drain-source breakdown voltage
$V_{\mathrm{BR}(\mathrm{DSS})}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=0.25 \mathrm{~mA}$

13 Typ. capacitances
$C=f\left(V_{\mathrm{DS}}\right) ; V_{\mathrm{GS}}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

14 Typ. Coss stored energy
$E_{\text {oss }}=f\left(V_{D S}\right)$

Definition of diode switching characteristics

PG-TO220-3-31: Outline/Fully isolated package (2500VAC; 1 minute)

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIIN	MAX
A	4.572	4.826	0.180	0.190
A1	2.573	2.827	0.101	0.111
A2	2.514	2.616	0.099	0.103
b	0.649	0.776	0.025	0.030
b2	1.143	1.509	0.045	0.059
c	0.449	0.627	0.017	0.027
D	15.863	16.117	0.624	0.634
D1	9.554	9.808	0.376	0.386
E	10.373	10.627	0.408	0.418
e	2.540		0.100	
e1	5.080		0.200	
N	3		3	
H	29.463	29.717	1.160	1.170
L	13.473	13.727	0.530	0.540
L1	3.175	3.429	0.125	0.135
oP	2.949	3.025	0.119	0.116
Q	3.149	3.251	0.124	0.128

REFERENCE

[^0]Published by
Infineon Technologies AG
Bereich Kommunikation
St.-Martin-Straße 53
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices, please contact your nearest Infineon Technologies office in Germany or our Infineon Technologies representatives worldwide (see address list).

Warnings

Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact your nearest Infineon Technologies office.
Infineon Technologies' components may only be used in life-support devices or systems with the expressed written approval of Infineon Technologies if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: Uımensions in mm/ıncnes

